cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099921 a(n) = 5*Fibonacci(n)^2.

Original entry on oeis.org

5, 5, 20, 45, 125, 320, 845, 2205, 5780, 15125, 39605, 103680, 271445, 710645, 1860500, 4870845, 12752045, 33385280, 87403805, 228826125, 599074580, 1568397605, 4106118245, 10749957120, 28143753125, 73681302245, 192900153620, 505019158605, 1322157322205
Offset: 1

Views

Author

Ralf Stephan, Nov 01 2004

Keywords

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 53.

Crossrefs

Cf. A000032, A000045 (Fibonacci numbers), A007598.

Programs

Formula

a(n) = 5 * A007598(n).
a(n) = Lucas(n)^2 - 4(-1)^n.
G.f.: x*(5-5*x) / ((1+x)*(1-3*x+x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n > 3. - Matthew House, Jan 13 2017
a(n) = ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*(-1)^n. - Colin Barker, Jan 14 2017
a(n) = 2*Fibonacci(2*n+1) - Fibonacci(2*n) - 2*(-1)^n. - Vincenzo Librandi, Sep 14 2017
a(n) = Lucas(2*n) - 2*(-1)^n. - Amiram Eldar, Jan 17 2022