cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099389 Subsequence of primes in sequence b(n) = 3*prime(n) - prime(n+1) - 3 (A100021).

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 37, 53, 53, 67, 79, 97, 113, 113, 127, 137, 137, 151, 157, 167, 197, 199, 211, 269, 293, 293, 337, 353, 349, 379, 389, 383, 439, 449, 457, 547, 557, 569, 607, 617, 619, 617, 653, 661, 691, 751, 757, 787, 829, 857, 857, 877, 887, 907, 919
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 17 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3#[[1]]-#[[2]]-3&/@Partition[Prime[Range[100]],2,1],PrimeQ] (* Harvey P. Dale, Oct 13 2018 *)
  • PARI
    for(n=1,91,if(isprime(k=3*prime(n)-prime(n+1)-3),print1(k,",")))

Extensions

Edited and extended by Klaus Brockhaus, Nov 19 2004

A098764 a(n) = 3p - q where p and q are consecutive primes.

Original entry on oeis.org

3, 4, 8, 10, 20, 22, 32, 34, 40, 56, 56, 70, 80, 82, 88, 100, 116, 116, 130, 140, 140, 154, 160, 170, 190, 200, 202, 212, 214, 212, 250, 256, 272, 268, 296, 296, 308, 322, 328, 340, 356, 352, 380, 382, 392, 386, 410, 442, 452, 454, 460, 476, 472, 496, 508, 520
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 30 2004

Keywords

Comments

Except for the initial term, a(n)=={2, 4} mod 6.
Not monotonic: a(29) = 214 > 212 = a(30), a(33) = 272 > 268 = a(34), etc. - Charles R Greathouse IV, Jun 03 2013

Crossrefs

Programs

  • Mathematica
    ListConvolve[{-1,3},Prime[Range[100]]] (* Paolo Xausa, Nov 02 2023 *)
  • PARI
    a(n) = 3*prime(n) - prime(n+1) \\ Michel Marcus, Jun 03 2013

Formula

a(n) = A001043(n) - 2*A001223(n).
a(n) = 3*A000040(n)-A000040(n+1) = A001748(n)-A000040(n+1) = A001747(n+1)-A001223(n). - R. J. Mathar, Apr 22 2010
a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 03 2013
a(n) = A100021(n) + 3. - Hugo Pfoertner, Nov 02 2023
a(n) = A062234(n) + A000040(n). - Anthony S. Wright, Feb 19 2024

Extensions

Corrected (116 duplicated) by R. J. Mathar, Apr 22 2010
Showing 1-2 of 2 results.