A100050 A Chebyshev transform of n.
0, 1, 2, 0, -4, -5, 0, 7, 8, 0, -10, -11, 0, 13, 14, 0, -16, -17, 0, 19, 20, 0, -22, -23, 0, 25, 26, 0, -28, -29, 0, 31, 32, 0, -34, -35, 0, 37, 38, 0, -40, -41, 0, 43, 44, 0, -46, -47, 0, 49, 50, 0, -52, -53, 0, 55, 56, 0, -58, -59, 0, 61, 62, 0, -64, -65, 0, 67, 68, 0, -70, -71, 0, 73, 74, 0, -76, -77, 0, 79, 80, 0, -82, -83, 0, 85, 86, 0
Offset: 0
Examples
x + 2*x^2 - 4*x^4 - 5*x^5 + 7*x^7 + 8*x^8 - 10*x^10 - 11*x^11 + 13*x^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (2,-3,2,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2, -3, 2, -1}, {0, 1, 2, 0},50] (* G. C. Greubel, Aug 08 2017 *)
-
PARI
{a(n) = n * (-1)^(n\3) * sign( n%3)} /* Michael Somos, Mar 19 2011 */
-
PARI
{a(n) = local(A, p, e); if( abs(n)<1, 0, A = factor(abs(n)); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, -(-2)^e, (kronecker( -12, p) * p)^e))))} /* Michael Somos, Mar 19 2011 */
-
Sage
[lucas_number1(n,2,1)*lucas_number1(n,1,1) for n in range(0,88)] # Zerinvary Lajos, Jul 06 2008
Formula
Euler transform of length 6 sequence [ 2, -3, -2, 0, 0, 2]. - Michael Somos, Mar 19 2011
a(n) is multiplicative with a(2^e) = -(-2)^e if e>0, a(3^e) = 0^e, a(p^e) = p^e if p == 1 (mod 6), a(p^e) = (-p)^e if p == 5 (mod 6). - Michael Somos, Mar 19 2011
G.f.: x*(1 - x^2)^3 *(1 - x^3)^2 / ((1 - x)^2 *(1 - x^6)^2) = x *(1 + x)^2 *(1 - x^2) / (1 + x^3)^2. - Michael Somos, Mar 19 2011
a(3*n) = 0, a(3*n + 1) = (-1)^n * (3*n + 1), a(3*n + 2) = (-1)^n * (3*n + 2). a(-n) = a(n). - Michael Somos, Mar 19 2011
G.f.: x(1-x^2)/(1-x+x^2)^2.
a(n) = 2*a(n-1) -3*a(n-2) +2*a(n-3) -a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*(n-2k)/(n-k).
Comments