cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100148 Structured small rhombicosidodecahedral numbers.

Original entry on oeis.org

1, 60, 285, 784, 1665, 3036, 5005, 7680, 11169, 15580, 21021, 27600, 35425, 44604, 55245, 67456, 81345, 97020, 114589, 134160, 155841, 179740, 205965, 234624, 265825, 299676, 336285, 375760, 418209, 463740, 512461, 564480
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100147, A100149 for adjacent structured Archimedean solids; and A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(108*n^3-150*n^2+48*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[(108n^3-150n^2+48n)/6,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,60,285,784},40](* Harvey P. Dale, Oct 10 2011 *)
  • PARI
    vector(50, n, (108*n^3 - 150*n^2 + 48*n)/6) \\ G. C. Greubel, Oct 18 2018

Formula

a(n) = (1/6)*(108*n^3 - 150*n^2 + 48*n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=60, a(3)=285, a(4)=784. - Harvey P. Dale, Oct 10 2011
G.f.: x*(x*(51*x+56)+1)/(x-1)^4. - Harvey P. Dale, Oct 10 2011
E.g.f.: x*(1 + 29*x + 18*x^2)*exp(x). - G. C. Greubel, Oct 18 2018

A100150 Structured snub cubic numbers.

Original entry on oeis.org

1, 24, 107, 288, 605, 1096, 1799, 2752, 3993, 5560, 7491, 9824, 12597, 15848, 19615, 23936, 28849, 34392, 40603, 47520, 55181, 63624, 72887, 83008, 94025, 105976, 118899, 132832, 147813, 163880, 181071, 199424, 218977, 239768, 261835, 285216, 309949, 336072
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100149, A100151 for adjacent structured Archimedean solids; and A100145 for more on structured polyhedral numbers.

Programs

Formula

a(n) = (1/6)*(38*n^3 - 48*n^2 + 16*n).
G.f.: x*(1 + 20*x + 17*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
From Elmo R. Oliveira, Aug 05 2025: (Start)
E.g.f.: exp(x)*x*(19*x^2 + 33*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

Extensions

Deleted extra +16 in formula, corrected by Craig Ferguson, Jul 18 2011
Showing 1-2 of 2 results.