cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100152 Structured truncated cubic numbers.

Original entry on oeis.org

1, 24, 100, 260, 535, 956, 1554, 2360, 3405, 4720, 6336, 8284, 10595, 13300, 16430, 20016, 24089, 28680, 33820, 39540, 45871, 52844, 60490, 68840, 77925, 87776, 98424, 109900, 122235, 135460, 149606, 164704
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100151, A100153 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated cubic numbers A005912.

Programs

  • Magma
    [(1/6)*(31*n^3-27*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[n/6 (31n^2-27n+2),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,24,100,260},40] (* Harvey P. Dale, Jan 11 2016 *)
  • PARI
    vector(50, n, (31*n^3-27*n^2+2*n)/6) \\ G. C. Greubel, Oct 18 2018

Formula

a(n) = (1/6)*n*(31*n^2 - 27*n + 2).
G.f.: x*(1 + 20*x + 10*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=24, a(3)=100, a(4)=260. - Harvey P. Dale, Jan 11 2016
E.g.f.: x*(6 + 66*x + 31*x^2)*exp(x)/6. - G. C. Greubel, Oct 18 2018