cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100153 Structured truncated dodecahedral numbers.

Original entry on oeis.org

1, 60, 276, 748, 1575, 2856, 4690, 7176, 10413, 14500, 19536, 25620, 32851, 41328, 51150, 62416, 75225, 89676, 105868, 123900, 143871, 165880, 190026, 216408, 245125, 276276, 309960, 346276, 385323, 427200, 472006, 519840
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100152, A100154 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(99*n^3-123*n^2+30*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Maple
    A100153:=n->(n*(33*n^2-41*n+10))/2; seq(A100153(k), k=1..40); # Wesley Ivan Hurt, Oct 24 2013
  • Mathematica
    Table[(n(33n^2-41n+10))/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,60,276,748},40] (* Harvey P. Dale, Dec 09 2012 *)
  • PARI
    vector(50, n, n*(33*n^2 - 41*n + 10)/2) \\ G. C. Greubel, Oct 18 2018

Formula

a(n) = (1/2)*n*(33*n^2 - 41*n + 10).
G.f.: x*(1 + 56*x + 42*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=60, a(3)=276, a(4)=748. - Harvey P. Dale, Dec 09 2012
E.g.f.: x*(2 + 58*x + 33*x^2)*exp(x)/2. - G. C. Greubel, Oct 18 2018

A100155 Structured truncated octahedral numbers.

Original entry on oeis.org

1, 24, 103, 272, 565, 1016, 1659, 2528, 3657, 5080, 6831, 8944, 11453, 14392, 17795, 21696, 26129, 31128, 36727, 42960, 49861, 57464, 65803, 74912, 84825, 95576, 107199, 119728, 133197, 147640, 163091, 179584, 197153, 215832, 235655, 256656, 278869, 302328
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100154, A100156 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated octahedral numbers A005910.

Programs

  • Magma
    [(1/6)*(34*n^3-36*n^2+8*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 24, 103, 272}, 50] (* Paolo Xausa, Aug 06 2025 *)

Formula

a(n) = (1/3)*n*(17*n^2 - 18*n + 4).
G.f.: x*(1 + 20*x + 13*x^2)/(1-x)^4. - Colin Barker, Feb 12 2012
From Elmo R. Oliveira, Aug 05 2025: (Start)
E.g.f.: exp(x)*x*(17*x^2 + 33*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)
Showing 1-2 of 2 results.