cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100184 Structured octagonal anti-prism numbers.

Original entry on oeis.org

1, 16, 64, 164, 335, 596, 966, 1464, 2109, 2920, 3916, 5116, 6539, 8204, 10130, 12336, 14841, 17664, 20824, 24340, 28231, 32516, 37214, 42344, 47925, 53976, 60516, 67564, 75139, 83260, 91946, 101216, 111089, 121584, 132720, 144516, 156991, 170164, 184054, 198680
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100185 (structured anti-prisms), A100145 (for more on structured numbers).

Programs

  • GAP
    List([1..33], n -> (1/6)*(19*n^3-15*n^2+2*n)); # Muniru A Asiru, Feb 14 2018
  • Magma
    [(1/6)*(19*n^3-15*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Maple
    a:=n->(1/6)*(19*n^3-15*n^2+2*n): seq(a(n),n=1..33); # Muniru A Asiru, Feb 14 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 12 x + 6 x^2)/(1 - x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Feb 15 2018 *)

Formula

a(n) = (1/6)*(19*n^3-15*n^2+2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 12*x + 6*x^2)/(1 - x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i = 0..n-1} (n + i)*(n + 2*i). - Bruno Berselli, Feb 14 2018
E.g.f.: exp(x)*x*(6 + 42*x + 19*x^2)/6. - Stefano Spezia, Oct 11 2023