A100188 Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.
1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1
Examples
There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Crossrefs
Programs
-
Magma
[(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
-
Mathematica
Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
-
PARI
vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018
Formula
a(n) = (1/6)*(2*n^4 - 2*n^2 + 6*n).
G.f.: x*(1 + x + 7*x^2 - x^3)/(1-x)^5. - Colin Barker, Apr 16 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=1, a(2)=6, a(3)=27, a(4)=84, a(5)=205. - Harvey P. Dale, May 11 2016
E.g.f.: (3*x + 6*x^2 + 6*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Nov 08 2018