A000578
The cubes: a(n) = n^3.
Original entry on oeis.org
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
Offset: 0
For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - _Patrick J. McNab_, Mar 28 2016
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 43, 64, 81.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 292.
- T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
- J. Propp and A. Propp-Gubin, "Counting Triangles in Triangles", Pi Mu Epsilon Journal (to appear).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 6-7.
- D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- H. Bottomley, Illustration of initial terms
- British National Museum, Tablet 92698
- N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
- M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
- Ralph Greenberg, Math For Poets
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets [Cached version at the Wayback Machine]
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75. - fixed by _Felix Fröhlich_, Jun 16 2014
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (8).
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- James Propp and Adam Propp-Gubin, Counting Triangles in Triangles, arXiv:2409.17117 [math.CO], 25 September 2024.
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
- Eric Weisstein's World of Mathematics, Cubic Number, and Hex Pyramidal Number
- Ronald Yannone, Hilbert Matrix Analyses
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for "core" sequences
- Index entries for sequences related to Benford's law
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
a000578 = (^ 3)
a000578_list = 0 : 1 : 8 : zipWith (+)
(map (+ 6) a000578_list)
(map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
-- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
-
[ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
-
I:=[0,1,8,27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
-
A000578 := n->n^3;
seq(A000578(n), n=0..50);
isA000578 := proc(r)
local p;
if r = 0 or r =1 then
true;
else
for p in ifactors(r)[2] do
if op(2, p) mod 3 <> 0 then
return false;
end if;
end do:
true ;
end if;
end proc: # R. J. Mathar, Oct 08 2013
-
Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
Accumulate[Table[3n^2+3n+1,{n,0,20}]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,27,64},20](* Harvey P. Dale, Aug 18 2018 *)
-
A000578(n):=n^3$
makelist(A000578(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
-
is(n)=ispower(n,3) \\ Charles R Greathouse IV, Feb 20 2012
-
A000578_list, m = [], [6, -6, 1, 0]
for _ in range(10**2):
A000578_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
-
(define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A100145
Structured great rhombicosidodecahedral numbers.
Original entry on oeis.org
1, 120, 579, 1600, 3405, 6216, 10255, 15744, 22905, 31960, 43131, 56640, 72709, 91560, 113415, 138496, 167025, 199224, 235315, 275520, 320061, 369160, 423039, 481920, 546025, 615576, 690795, 771904, 859125, 952680, 1052791, 1159680
Offset: 1
James A. Record (james.record(AT)gmail.com), Nov 07 2004
-
[(1+(n-1))*(1+22*(n-1)+37*(n-1)^2): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
-
LinearRecurrence[{4,-6,4,-1},{1,120,579,1600},40] (* Harvey P. Dale, Mar 27 2019 *)
-
a(n)=37*n^3 - 52*n^2 + 16*n \\ Charles R Greathouse IV, Nov 07 2016
A007588
Stella octangula numbers: a(n) = n*(2*n^2 - 1).
Original entry on oeis.org
0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008; Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]
- A. Bremner, R. Høibakk and D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
- John Elias, Nesting Cubes of the Surface Points of a Hexagonal Prism
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
- Eric Weisstein's World of Mathematics, Stella Octangula Number
- Wikipedia, Stella octangula number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Backwards differences give star numbers
A003154:
A003154(n)=a(n)-a(n-1).
1/12*t*(n^3-n)+ n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
Cf.
A001653 = Numbers n such that 2*n^2 - 1 is a square.
-
[n*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Aug 18 2011
-
A007588:=n->n*(2*n^2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt, Mar 10 2014
-
Table[ n(2n^2-1), {n,0,169} ] (* Alexander Adamchuk, Jun 02 2008 *)
LinearRecurrence[{4,-6,4,-1},{0,1,14,51},50] (* Harvey P. Dale, Sep 16 2011 *)
-
a(n)=n*(2*n^2-1)
-
def A007588(n): return n*(2*n**2-1) # Chai Wah Wu, Feb 18 2022
In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.
A004466
a(n) = n*(5*n^2 - 2)/3.
Original entry on oeis.org
0, 1, 12, 43, 104, 205, 356, 567, 848, 1209, 1660, 2211, 2872, 3653, 4564, 5615, 6816, 8177, 9708, 11419, 13320, 15421, 17732, 20263, 23024, 26025, 29276, 32787, 36568, 40629, 44980, 49631, 54592
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A063521
a(n) = n*(7*n^2-4)/3.
Original entry on oeis.org
0, 1, 16, 59, 144, 285, 496, 791, 1184, 1689, 2320, 3091, 4016, 5109, 6384, 7855, 9536, 11441, 13584, 15979, 18640, 21581, 24816, 28359, 32224, 36425, 40976, 45891, 51184, 56869, 62960, 69471, 76416, 83809, 91664, 99995, 108816, 118141, 127984, 138359, 149280, 160761
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
A063521:=n->n*(7*n^2-4)/3; seq(A063521(k), k=0..100); # Wesley Ivan Hurt, Oct 24 2013
-
lst={};Do[AppendTo[lst, n*(7*n^2-4)/3], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
CoefficientList[Series[x*(1+12*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
-
a(n) = { n*(7*n^2 - 4)/3 } \\ Harry J. Smith, Aug 25 2009
A006484
a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
Original entry on oeis.org
0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
Offset: 0
Dennis S. Kluk (mathemagician(AT)ameritech.net)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n+1)*(n^2 - 3*n + 5)/6: n in [0..50]]; // Vincenzo Librandi, May 16 2011
-
A006484:=-(1-2*z+5*z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
lst={};Do[AppendTo[lst, n*(n+1)*(n^2-3*n+5)/6], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
Table[n(n+1) (n^2-3n+5)/6,{n,0,40}] (* Harvey P. Dale, May 29 2019 *)
-
a(n)=n*(n+1)*(n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 18 2022
A063523
a(n) = n*(8*n^2 - 5)/3.
Original entry on oeis.org
0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
-
a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009
A005915
Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).
Original entry on oeis.org
1, 14, 57, 148, 305, 546, 889, 1352, 1953, 2710, 3641, 4764, 6097, 7658, 9465, 11536, 13889, 16542, 19513, 22820, 26481, 30514, 34937, 39768, 45025, 50726, 56889, 63532, 70673, 78330, 86521, 95264, 104577, 114478, 124985, 136116, 147889, 160322, 173433, 187240
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), pp. 4545-4558.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(n + 1)*(3*n^2 + 3*n + 1): n in [0..50]]; // Vincenzo Librandi, May 16 2011
-
A005915:=(1+10*z+7*z**2)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation
-
Table[(n+1)(3n^2+3n+1),{n,0,50}] (* Harvey P. Dale, Mar 31 2011 *)
LinearRecurrence[{4,-6,4,-1},{1,14,57,148},50] (* Harvey P. Dale, Jun 25 2011 *)
-
a(n) = (n + 1)*(3*n^2 + 3*n + 1);
A051673
Cubic star numbers: a(n) = n^3 + 4*Sum_{i=0..n-1} i^2.
Original entry on oeis.org
0, 1, 12, 47, 120, 245, 436, 707, 1072, 1545, 2140, 2871, 3752, 4797, 6020, 7435, 9056, 10897, 12972, 15295, 17880, 20741, 23892, 27347, 31120, 35225, 39676, 44487, 49672, 55245, 61220, 67611, 74432, 81697, 89420, 97615, 106296, 115477, 125172
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(51) = 51*(51*(7*51-6)+2)/3 = 304351 = 17 * 17903 is semiprime. - _Jonathan Vos Post_, May 27 2010
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
-
[n*(n*(7*n-6)+2)/3: n in [0..50]]; // Vincenzo Librandi, May 12 2011
-
A051673:=n->n*(n*(7*n-6)+2)/3; seq(A051673(n), n=0..40); # Wesley Ivan Hurt, Feb 02 2014
-
Table[n^3+4Sum[i^2,{i,0,n-1}],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,1,12,47},40] (* Harvey P. Dale, Jul 22 2011 *)
-
a(n)=n*(n*(7*n-6)+2)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(7*n^2-6*n+2)/3 for n in range(51)] # G. C. Greubel, Mar 10 2024
Corrected by
T. D. Noe, Nov 01 2006, Nov 08 2006
Showing 1-10 of 14 results.
Comments