A126274 Partial sum of A005915.
1, 15, 72, 220, 525, 1071, 1960, 3312, 5265, 7975, 11616, 16380, 22477, 30135, 39600, 51136, 65025, 81567, 101080, 123900, 150381, 180895, 215832, 255600, 300625, 351351, 408240, 471772, 542445, 620775, 707296, 802560, 907137, 1021615
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..35],n->(1/4)*(n+1)^2*(n+2)*(3*n+2)); # Muniru A Asiru, Oct 24 2018
-
Magma
[1/4*(n + 1)^2*(n + 2)*(3*n + 2): n in [0..30]]; // Vincenzo Librandi, May 16 2011
-
Maple
seq(coeff(series((1+10*x+7*x^2)/(1-x)^5,x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 24 2018
-
Mathematica
Table[(3*n^4 + 14*n^3 + 23*n^2 + 16*n + 4)/4, {n,0,10}] (* G. C. Greubel, Oct 23 2018 *) LinearRecurrence[{5,-10,10,-5,1},{1,15,72,220,525},40] (* Harvey P. Dale, Mar 31 2022 *)
-
PARI
vector(30, n, n--; (3*n^4+14*n^3+23*n^2+16*n+4)/4) \\ G. C. Greubel, Oct 23 2018
Formula
a(n) = Sum_{i=0..n} (i + 1)*(3*i^2 + 3*i + 1).
a(n) = (3*n^4 + 6*n^3 + 3*n^2)/4 + 2*n^3 + 5*n^2 + 4*n + 1.
a(n) = (1/4)*(n + 1)^2*(n + 2)*(3*n + 2). - N-E. Fahssi, May 03 2008
G.f.: (1 + 10 x + 7 x^2)/(1 - x)^5. - N-E. Fahssi, May 03 2008
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} max(i,j,k). - Enrique Pérez Herrero, Feb 26 2013
E.g.f.: (3*x^4 + 32*x^3 + 86*x^2 + 56*x + 4)*exp(x)/4. - G. C. Greubel, Oct 23 2018
Extensions
Corrected and extended by Vincenzo Librandi, May 16 2011
Comments
Examples
References
Links
Crossrefs
Programs
Mathematica
Formula
A007588 Stella octangula numbers: a(n) = n*(2*n^2 - 1).
Original entry on oeis.org
Views
Author
Keywords
Comments
References
Links
Crossrefs
Programs
Magma
Maple
Mathematica
PARI
Python
Formula
Extensions
A100157 Structured rhombic dodecahedral numbers (vertex structure 9).
Original entry on oeis.org
Views
Author
Keywords
Comments
Examples
References
Links
Crossrefs
Programs
Magma
Maple
PARI
Formula
A260260 a(n) = n*(16*n^2 - 21*n + 7)/2.
Original entry on oeis.org
Views
Author
Keywords
Comments
Links
Crossrefs
Programs
Magma
Mathematica
PARI
Sage
Formula
A051673 Cubic star numbers: a(n) = n^3 + 4*Sum_{i=0..n-1} i^2.
Original entry on oeis.org
Views
Author
Keywords
Comments
Examples
References
Links
Crossrefs
Programs
Magma
Maple
Mathematica
PARI
SageMath
Formula
Extensions
A213828 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
Views
Author
Keywords
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula
A256141 Square array read by antidiagonals upwards: T(n,k), n>=0, k>=0, in which row n lists the partial sums of the n-th row of the square array of A256140.
Original entry on oeis.org
Views
Author
Keywords
Comments
Examples
Links
Crossrefs
A100174 Structured tetrakis hexahedral numbers (vertex structure 5).
Original entry on oeis.org
Views
Author
Keywords
Links
Crossrefs
Programs
Magma
Formula
Extensions
A100189 Equatorial structured meta-anti-diamond numbers, the n-th number from an equatorial structured n-gonal anti-diamond number sequence.
Original entry on oeis.org
Views
Author
Keywords
Examples
Links
Crossrefs
Programs
Magma
Mathematica
Formula
Started in 1964 by Neil J. A. Sloane | Maintained by The OEIS Foundation Inc.
Content is available under The OEIS End-User License Agreement.