cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006484 a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.

Original entry on oeis.org

0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
Offset: 0

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

Comments

Structured meta-pyramidal numbers, the n-th number from an n-gonal pyramidal number sequence. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The Gi4 triangle sums of A139600 are given by the terms of this sequence. For the definitions of the Gi4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. other meta sequences: A100177: prism; A000447: "polar" diamond; A059722: "equatorial diamond"; A100185: anti-prism; A100188: "polar" anti-diamond; and A100189: "equatorial" anti-diamond. Cf. A100145 for more on structured numbers.
Cf. A000332.

Programs

Formula

a(n) = (1/6)*(n^4 - 2*n^3 + 2*n^2 + 5*n). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 5*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011

A100188 Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.

Original entry on oeis.org

1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A000578, A000447, A004466, A007588, A063521, A062523 - "polar" structured anti-diamonds; A100189 - "equatorial" structured meta-anti-diamond numbers; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
  • PARI
    vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(2*n^4 - 2*n^2 + 6*n).
G.f.: x*(1 + x + 7*x^2 - x^3)/(1-x)^5. - Colin Barker, Apr 16 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=1, a(2)=6, a(3)=27, a(4)=84, a(5)=205. - Harvey P. Dale, May 11 2016
E.g.f.: (3*x + 6*x^2 + 6*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Nov 08 2018
Showing 1-2 of 2 results.