cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A139600 Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.
The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011

Examples

			The square array of nonnegatives together with polygonal numbers begins:
=========================================================
....................... A   A   .   .   A    A    A    A
....................... 0   0   .   .   0    0    1    1
....................... 0   0   .   .   1    1    3    3
....................... 0   0   .   .   6    7    9    9
....................... 0   0   .   .   9    3    6    6
....................... 0   1   .   .   5    2    0    0
....................... 4   2   .   .   7    9    6    7
=========================================================
Nonnegatives . A001477: 0,  1,  2,  3,  4,   5,   6,   7, ...
Triangulars .. A000217: 0,  1,  3,  6, 10,  15,  21,  28, ...
Squares ...... A000290: 0,  1,  4,  9, 16,  25,  36,  49, ...
Pentagonals .. A000326: 0,  1,  5, 12, 22,  35,  51,  70, ...
Hexagonals ... A000384: 0,  1,  6, 15, 28,  45,  66,  91, ...
Heptagonals .. A000566: 0,  1,  7, 18, 34,  55,  81, 112, ...
Octagonals ... A000567: 0,  1,  8, 21, 40,  65,  96, 133, ...
9-gonals ..... A001106: 0,  1,  9, 24, 46,  75, 111, 154, ...
10-gonals .... A001107: 0,  1, 10, 27, 52,  85, 126, 175, ...
11-gonals .... A051682: 0,  1, 11, 30, 58,  95, 141, 196, ...
12-gonals .... A051624: 0,  1, 12, 33, 64, 105, 156, 217, ...
...
=========================================================
The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.
		

Crossrefs

A formal extension negative n is in A326728.
Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*(n*(k-1)+2)/2 >;
    A139600:= func< n,k | T(n-k, k) >;
    [A139600(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Maple
    T:= (n, k)-> n*(k-1)*k/2+k:
    seq(seq(T(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2018
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • Python
    def A139600Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + n, y + n
    for n in range(8):
        R = A139600Row(n)
        print([next(R) for  in range(11)]) # _Peter Luschny, Aug 04 2019
    
  • SageMath
    def T(n,k): return k*(n*(k-1)+2)/2
    def A139600(n,k): return T(n-k, k)
    flatten([[A139600(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = n*(k-1)*k/2+k.
T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016
From Stefano Spezia, Apr 12 2024: (Start)
G.f.: y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + x*y)/2. (End)

Extensions

Edited by Omar E. Pol, Jan 05 2009

A080851 Square array of pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0

Views

Author

Paul Barry, Feb 21 2003

Keywords

Comments

The first row contains the triangular numbers, which are really two-dimensional, but can be regarded as degenerate pyramidal numbers. - N. J. A. Sloane, Aug 28 2015

Examples

			Array begins (n>=0, k>=0):
1,  3,  6, 10,  15,  21,  28,  36,  45,   55, ... A000217
1,  4, 10, 20,  35,  56,  84, 120, 165,  220, ... A000292
1,  5, 14, 30,  55,  91, 140, 204, 285,  385, ... A000330
1,  6, 18, 40,  75, 126, 196, 288, 405,  550, ... A002411
1,  7, 22, 50,  95, 161, 252, 372, 525,  715, ... A002412
1,  8, 26, 60, 115, 196, 308, 456, 645,  880, ... A002413
1,  9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
		

Crossrefs

Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
Cf. A057145, A027660 (antidiagonal sums).
See A257199 for another version of this array.

Programs

  • Derive
    vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
  • Maple
    A080851 := proc(n,k)
        binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
    end proc:
    seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
  • Mathematica
    pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)

Formula

T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016

A059722 a(n) = n*(2*n^2 - 2*n + 1).

Original entry on oeis.org

0, 1, 10, 39, 100, 205, 366, 595, 904, 1305, 1810, 2431, 3180, 4069, 5110, 6315, 7696, 9265, 11034, 13015, 15220, 17661, 20350, 23299, 26520, 30025, 33826, 37935, 42364, 47125, 52230, 57691, 63520, 69729, 76330, 83335, 90756, 98605, 106894, 115635, 124840
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2001

Keywords

Comments

Mean of the first four nonnegative powers of 2n+1, i.e., ((2n+1)^0 + (2n+1)^1 + (2n+1)^2 + (2n+1)^3)/4. E.g., a(2) = (1 + 3 + 9 + 27)/4 = 10.
Equatorial structured meta-diamond numbers, the n-th number from an equatorial structured n-gonal diamond number sequence. There are no 1- or 2-gonal diamonds, so 1 and (n+2) are used as the first and second terms since all the sequences begin as such. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = row sums of triangle A143803. - Gary W. Adamson, Sep 01 2008
Form an array from the antidiagonals containing the terms in A002061 to give antidiagonals 1; 3,3; 7,4,7; 13,8,8,13; 21,14,9,14,21; and so on. The difference between the sum of the terms in n+1 X n+1 matrices and those in n X n matrices is a(n) for n>0. - J. M. Bergot, Jul 08 2013
Sum of the numbers from (n-1)^2 to n^2. - Wesley Ivan Hurt, Sep 08 2014

Crossrefs

Cf. A000330, A005900, A081436, A100178, A100179, A059722: "equatorial" structured diamonds; A000447: "polar" structured meta-diamond; A006484 for other structured meta numbers; and A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Programs

Formula

a(n) = A053698(2*n-1)/4.
a(n) = Sum_{j=1..n} ((n+j-1)^2-j^2+1). - Zerinvary Lajos, Sep 13 2006
From R. J. Mathar, Sep 02 2008: (Start)
G.f.: x*(1 + x)*(1 + 5*x)/(1 - x)^4.
a(n) = A002414(n-1) + A002414(n).
a(n+1) - a(n) = A136392(n+1). (End)
a(n) = (A000290(n) + A000290(n+1)) * (A000217(n+1) - A000217(n)). - J. M. Bergot, Nov 02 2012
a(n) = n * A001844(n-1). - Doug Bell, Aug 18 2015
a(n) = A000217(n^2) - A000217(n^2-2*n). - Bruno Berselli, Jun 26 2018
E.g.f.: exp(x)*x*(1 + 4*x + 2*x^2). - Stefano Spezia, Jun 20 2021

Extensions

Edited with new definition by N. J. A. Sloane, Aug 29 2008

A100188 Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.

Original entry on oeis.org

1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A000578, A000447, A004466, A007588, A063521, A062523 - "polar" structured anti-diamonds; A100189 - "equatorial" structured meta-anti-diamond numbers; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
  • PARI
    vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(2*n^4 - 2*n^2 + 6*n).
G.f.: x*(1 + x + 7*x^2 - x^3)/(1-x)^5. - Colin Barker, Apr 16 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=1, a(2)=6, a(3)=27, a(4)=84, a(5)=205. - Harvey P. Dale, May 11 2016
E.g.f.: (3*x + 6*x^2 + 6*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Nov 08 2018

A100177 Structured meta-prism numbers, the n-th number from a structured n-gonal prism number sequence.

Original entry on oeis.org

1, 4, 18, 64, 175, 396, 784, 1408, 2349, 3700, 5566, 8064, 11323, 15484, 20700, 27136, 34969, 44388, 55594, 68800, 84231, 102124, 122728, 146304, 173125, 203476, 237654, 275968, 318739, 366300, 418996, 477184, 541233, 611524, 688450, 772416, 863839, 963148, 1070784, 1187200, 1312861, 1448244
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A002411, A000578, A050509, A006597, A100176, A100177 - structured prisms; A006484 for other meta structured numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-9*n^3+12*n^2): n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    Table[(3n^4-9n^3+12n^2)/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,18,64,175},50] (* Harvey P. Dale, Nov 07 2017 *)
  • PARI
    a(n)=(1/6)*(3*n^4-9*n^3+12*n^2);
    

Formula

a(n) = (1/6)*(3*n^4 - 9*n^3 + 12*n^2).
G.f.: x*(1 - x + 8*x^2 + 4*x^3)/(1-x)^5. - Colin Barker, Jun 08 2012
a(n) = A060354(n) * n = A000124(n-2) * n^2. - Bruce J. Nicholson, Jul 11 2018

A100185 Structured meta-anti-prism numbers, the n-th number from a structured n-gonal anti-prism number sequence.

Original entry on oeis.org

1, 4, 19, 68, 185, 416, 819, 1464, 2433, 3820, 5731, 8284, 11609, 15848, 21155, 27696, 35649, 45204, 56563, 69940, 85561, 103664, 124499, 148328, 175425, 206076, 240579, 279244, 322393, 370360, 423491, 482144
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com)

Keywords

Examples

			There are no 1- or 2-gonal anti-prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A005900, A000447, A096000, A100178, A100157, A100185 - structured anti-prisms; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-8*n^3+9*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 03 2011

Formula

a(n) = (1/6)*(3*n^4 - 8*n^3 + 9*n^2 + 2*n).
G.f.: x*(1 - x + 9*x^2 + 3*x^3)/(1-x)^5. [Colin Barker, Jun 08 2012]

A350405 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

37, 142, 285, 536, 911, 1268, 1909, 2713, 3876, 5179, 6891, 8901, 11190, 14384, 18087, 21697, 27055, 32166, 39111, 46560, 53892, 64412, 73949, 86778, 98202, 113635, 130088, 148051, 167505, 190968, 214955, 240143, 269775, 297615, 331201, 367429, 409179, 451340, 497830
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Programs

  • Mathematica
    Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* Giorgos Kalogeropoulos, Dec 30 2021 *)

Formula

a(n) >= A006484(n). - David A. Corneth, Dec 30 2021

Extensions

a(10)-a(31) from Michael S. Branicky, Dec 29 2021
More terms from David A. Corneth, Dec 30 2021

A292551 Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).

Original entry on oeis.org

0, 1, -1, 3, 4, 12, 21, 34, 56, 75, 115, 141, 204, 238, 329, 372, 496, 549, 711, 775, 980, 1056, 1309, 1398, 1704, 1807, 2171, 2289, 2716, 2850, 3345, 3496, 4064, 4233, 4879, 5067, 5796, 6004, 6821, 7050, 7960, 8211, 9219, 9493, 10604, 10902, 12121, 12444, 13776, 14125, 15575
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

The n-th generalized n-gonal number (for n >= 5).

Crossrefs

Main diagonal of A303301.

Programs

  • GAP
    List([0..50],n->(2*n^3-2*n^2+(-1)^n*(2*n^2-11*n-6)-5*n+6)/16); # Muniru A Asiru, Aug 08 2018
  • Maple
    a:= n-> (m-> m*((n-2)*m-(n-4))/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 29 2018
  • Mathematica
    CoefficientList[Series[x (1 - 2 x + x^2 + 7 x^3 - x^4)/((1 - x)^4 (1 + x)^3), {x, 0, 50}], x]
    Table[SeriesCoefficient[x (1 + (n - 4) x + x^2)/((1 - x)^3 (1 + x)^2), {x, 0, n}], {n, 0, 50}]
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, -1, 3, 4, 12, 21}, 51]
    Table[(2 n^3 - 2 n^2 + (-1)^n (2 n^2 - 11 n - 6) - 5 n + 6)/16, {n, 0, 50}]
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1-2*x+x^2+7*x^3-x^4)/((1-x)^4*(1+x)^3))) \\ Altug Alkan, Sep 18 2017
    

Formula

G.f.: x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).
a(n) = [x^n] x*(1 + (n - 4)*x + x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1/16)*((-6 + 9*x + 2*x^2)*exp(-x) + (6 - 5*x + 4*x^2 + 2*x^3)*exp(x)).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = (2*n^3 - 2*n^2 + (-1)^n*(2*n^2 - 11*n - 6) - 5*n + 6)/16.

A337797 Number of partitions of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 198, 858, 3728, 16115, 69125, 292940, 1224628, 5052396, 20570806, 82655098, 327881398, 1284663878, 4973614490, 19034194696, 72037124003, 269723590850, 999517370314, 3667158097572, 13325691939021, 47975192145998
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(3) = 4 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A337798 Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
		

Crossrefs

Programs

  • Maple
    p:= (n,k) ->  k * (k + 1) * (k * (n - 2) - n + 5) / 6:
    f:= proc(n) local k, P;
      P:= mul(1+x^p(n,k),k=1..n);
      coeff(P,x,p(n,n));
    end proc:
    map(f, [$0..80]); # Robert Israel, Sep 23 2020
  • PARI
    default(parisizemax, 2^31);
    p(n,k) = k*(k + 1)*(k*(n-2) - n + 5)/6;
    a(n) = my(f=1+x*O(x^p(n,n))); for(k=1, n, f*=1+x^p(n,k)); polcoeff(f, p(n,n)); \\ Jinyuan Wang, Dec 21 2021

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

Extensions

More terms from Robert Israel, Sep 23 2020
Showing 1-10 of 19 results. Next