cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000578 The cubes: a(n) = n^3.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the next n odd numbers; i.e., group the odd numbers so that the n-th group contains n elements like this: (1), (3, 5), (7, 9, 11), (13, 15, 17, 19), (21, 23, 25, 27, 29), ...; then each group sum = n^3 = a(n). Also the median of each group = n^2 = mean. As the sum of first n odd numbers is n^2 this gives another proof of the fact that the n-th partial sum = (n(n + 1)/2)^2. - Amarnath Murthy, Sep 14 2002
Total number of triangles resulting from criss-crossing cevians within a triangle so that two of its sides are each n-partitioned. - Lekraj Beedassy, Jun 02 2004. See Propp and Propp-Gubin for a proof.
Also structured triakis tetrahedral numbers (vertex structure 7) (cf. A100175 = alternate vertex); structured tetragonal prism numbers (vertex structure 7) (cf. A100177 = structured prisms); structured hexagonal diamond numbers (vertex structure 7) (cf. A100178 = alternate vertex; A000447 = structured diamonds); and structured trigonal anti-diamond numbers (vertex structure 7) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Schlaefli symbol for this polyhedron: {4, 3}.
Least multiple of n such that every partial sum is a square. - Amarnath Murthy, Sep 09 2005
Draw a regular hexagon. Construct points on each side of the hexagon such that these points divide each side into equally sized segments (i.e., a midpoint on each side or two points on each side placed to divide each side into three equally sized segments or so on), do the same construction for every side of the hexagon so that each side is equally divided in the same way. Connect all such points to each other with lines that are parallel to at least one side of the polygon. The result is a triangular tiling of the hexagon and the creation of a number of smaller regular hexagons. The equation gives the total number of regular hexagons found where n = the number of points drawn + 1. For example, if 1 point is drawn on each side then n = 1 + 1 = 2 and a(n) = 2^3 = 8 so there are 8 regular hexagons in total. If 2 points are drawn on each side then n = 2 + 1 = 3 and a(n) = 3^3 = 27 so there are 27 regular hexagons in total. - Noah Priluck (npriluck(AT)gmail.com), May 02 2007
The solutions of the Diophantine equation: (X/Y)^2 - X*Y = 0 are of the form: (n^3, n) with n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^2k - XY = 0 are of the form: (m*n^(2k + 1), m*n^(2k - 1)) with m >= 1, k >= 1 and n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^(2k + 1) - XY = 0 are of the form: (m*n^(k + 1), m*n^k) with m >= 1, k >= 1 and n >= 1. - Mohamed Bouhamida, Oct 04 2007
Except for the first two terms, the sequence corresponds to the Wiener indices of C_{2n} i.e., the cycle on 2n vertices (n > 1). - K.V.Iyer, Mar 16 2009
Totally multiplicative sequence with a(p) = p^3 for prime p. - Jaroslav Krizek, Nov 01 2009
Sums of rows of the triangle in A176271, n > 0. - Reinhard Zumkeller, Apr 13 2010
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
Numbers n for which order of torsion subgroup t of the elliptic curve y^2 = x^3 - n is t = 2. - Artur Jasinski, Jun 30 2010
The sequence with the lengths of the Pisano periods mod k is 1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, ... for k >= 1, apparently multiplicative and derived from A000027 by dividing every ninth term through 3. Cubic variant of A186646. - R. J. Mathar, Mar 10 2011
The number of atoms in a bcc (body-centered cubic) rhombic hexahedron with n atoms along one edge is n^3 (T. P. Martin, Shells of atoms, eq. (8)). - Brigitte Stepanov, Jul 02 2011
The inverse binomial transform yields the (finite) 0, 1, 6, 6 (third row in A019538 and A131689). - R. J. Mathar, Jan 16 2013
Twice the area of a triangle with vertices at (0, 0), (t(n - 1), t(n)), and (t(n), t(n - 1)), where t = A000217 are triangular numbers. - J. M. Bergot, Jun 25 2013
If n > 0 is not congruent to 5 (mod 6) then A010888(a(n)) divides a(n). - Ivan N. Ianakiev, Oct 16 2013
For n > 2, a(n) = twice the area of a triangle with vertices at points (binomial(n,3),binomial(n+2,3)), (binomial(n+1,3),binomial(n+1,3)), and (binomial(n+2,3),binomial(n,3)). - J. M. Bergot, Jun 14 2014
Determinants of the spiral knots S(4,k,(1,1,-1)). a(k) = det(S(4,k,(1,1,-1))). - Ryan Stees, Dec 14 2014
One of the oldest-known examples of this sequence is shown in the Senkereh tablet, BM 92698, which displays the first 32 terms in cuneiform. - Charles R Greathouse IV, Jan 21 2015
From Bui Quang Tuan, Mar 31 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ... 2*n-1 as follows. The first column contains all the integers 1, 2, 3, ... 2*n-1. Each succeeding column is the same as the previous column but without the first and last items. The last column contains only n. The sum of all the numbers in the triangle is n^3.
Here is the example for n = 4, where 1 + 2*2 + 3*3 + 4*4 + 3*5 + 2*6 + 7 = 64 = a(4):
1
2 2
3 3 3
4 4 4 4
5 5 5
6 6
7
(End)
For n > 0, a(n) is the number of compositions of n+11 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Number of inequivalent face colorings of the cube using at most n colors such that each color appears at least twice. - David Nacin, Feb 22 2017
Consider A = {a,b,c} a set with three distinct members. The number of subsets of A is 8, including {a,b,c} and the empty set. The number of subsets from each of those 8 subsets is 27. If the number of such iterations is n, then the total number of subsets is a(n-1). - Gregory L. Simay, Jul 27 2018
By Fermat's Last Theorem, these are the integers of the form x^k with the least possible value of k such that x^k = y^k + z^k never has a solution in positive integers x, y, z for that k. - Felix Fröhlich, Jul 27 2018

Examples

			For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - _Patrick J. McNab_, Mar 28 2016
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 43, 64, 81.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 292.
  • T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
  • J. Propp and A. Propp-Gubin, "Counting Triangles in Triangles", Pi Mu Epsilon Journal (to appear).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 6-7.
  • D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
For sums of cubes, cf. A000537 (partial sums), A003072, A003325, A024166, A024670, A101102 (fifth partial sums).
Cf. A001158 (inverse Möbius transform), A007412 (complement), A030078(n) (cubes of primes), A048766, A058645 (binomial transform), A065876, A101094, A101097.
Subsequence of A145784.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015
Cf. A000292 (tetrahedral numbers), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A098737 (main diagonal).

Programs

  • Haskell
    a000578 = (^ 3)
    a000578_list = 0 : 1 : 8 : zipWith (+)
       (map (+ 6) a000578_list)
       (map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
    -- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
    
  • Magma
    [ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
    
  • Magma
    I:=[0,1,8,27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
    
  • Maple
    A000578 := n->n^3;
    seq(A000578(n), n=0..50);
    isA000578 := proc(r)
        local p;
        if r = 0 or r =1 then
            true;
        else
            for p in ifactors(r)[2] do
                if op(2, p) mod 3 <> 0 then
                    return false;
                end if;
            end do:
            true ;
        end if;
    end proc: # R. J. Mathar, Oct 08 2013
  • Mathematica
    Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
    CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
    Accumulate[Table[3n^2+3n+1,{n,0,20}]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,27,64},20](* Harvey P. Dale, Aug 18 2018 *)
  • Maxima
    A000578(n):=n^3$
    makelist(A000578(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
    
  • PARI
    is(n)=ispower(n,3) \\ Charles R Greathouse IV, Feb 20 2012
    
  • Python
    A000578_list, m = [], [6, -6, 1, 0]
    for _ in range(10**2):
        A000578_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    
  • Scheme
    (define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = Sum_{i=0..n-1} A003215(i).
Multiplicative with a(p^e) = p^(3e). - David W. Wilson, Aug 01 2001
G.f.: x*(1+4*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
Dirichlet generating function: zeta(s-3). - Franklin T. Adams-Watters, Sep 11 2005, Amarnath Murthy, Sep 09 2005
E.g.f.: (1+3*x+x^2)*x*exp(x). - Franklin T. Adams-Watters, Sep 11 2005 - Amarnath Murthy, Sep 09 2005
a(n) = Sum_{i=1..n} (Sum_{j=i..n+i-1} A002024(j,i)). - Reinhard Zumkeller, Jun 24 2007
a(n) = lcm(n, (n - 1)^2) - (n - 1)^2. E.g.: lcm(1, (1 - 1)^2) - (1 - 1)^2 = 0, lcm(2, (2 - 1)^2) - (2 - 1)^2 = 1, lcm(3, (3 - 1)^2) - (3 - 1)^2 = 8, ... - Mats Granvik, Sep 24 2007
Starting (1, 8, 27, 64, 125, ...), = binomial transform of [1, 7, 12, 6, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = A007531(n) + A000567(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = binomial(n+2,3) + 4*binomial(n+1,3) + binomial(n,3). [Worpitzky's identity for cubes. See. e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n + 6*binomial(n+1,3) = binomial(n,1)+6*binomial(n+1,3). - Ron Knott, Jun 10 2019
A010057(a(n)) = 1. - Reinhard Zumkeller, Oct 22 2011
a(n) = A000537(n) - A000537(n-1), difference between 2 squares of consecutive triangular numbers. - Pierre CAMI, Feb 20 2012
a(n) = A048395(n) - 2*A006002(n). - J. M. Bergot, Nov 25 2012
a(n) = 1 + 7*(n-1) + 6*(n-1)*(n-2) + (n-1)*(n-2)*(n-3). - Antonio Alberto Olivares, Apr 03 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6. - Ant King Apr 29 2013
a(n) = A000330(n) + Sum_{i=1..n-1} A014105(i), n >= 1. - Ivan N. Ianakiev, Sep 20 2013
a(k) = det(S(4,k,(1,1,-1))) = k*b(k)^2, where b(1)=1, b(2)=2, b(k) = 2*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
For n >= 1, a(n) = A152618(n-1) + A033996(n-1). - Bui Quang Tuan, Apr 01 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Jon Tavasanis, Feb 21 2016
a(n) = n + Sum_{j=0..n-1} Sum_{k=1..2} binomial(3,k)*j^(3-k). - Patrick J. McNab, Mar 28 2016
a(n) = A000292(n-1) * 6 + n. - Zhandos Mambetaliyev, Nov 24 2016
a(n) = n*binomial(n+1, 2) + 2*binomial(n+1, 3) + binomial(n,3). - Tony Foster III, Nov 14 2017
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3) (A002117).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/4 (A197070). (End)
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi.
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)/(3*Pi). (End)
a(n) = Sum_{d|n} sigma_3(d)*mu(n/d) = Sum_{d|n} A001158(d)*A008683(n/d). Moebius transform of sigma_3(n). - Ridouane Oudra, Apr 15 2021

A005915 Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).

Original entry on oeis.org

1, 14, 57, 148, 305, 546, 889, 1352, 1953, 2710, 3641, 4764, 6097, 7658, 9465, 11536, 13889, 16542, 19513, 22820, 26481, 30514, 34937, 39768, 45025, 50726, 56889, 63532, 70673, 78330, 86521, 95264, 104577, 114478, 124985, 136116, 147889, 160322, 173433, 187240
Offset: 0

Views

Author

Keywords

Comments

Also as a(n) = (1/6)*(18*n^3 - 18*n^2 + 6*n), n>0: structured rhombic dodecahedral numbers (vertex structure 7) (A100157 = alternate vertex); structured tetrakis hexahedral numbers (vertex structure 7) (Cf. A100174 = alternate vertex); and structured hexagonal anti-diamond numbers (vertex structure 7) (Cf. A007588 = alternate vertex) (Cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w=x or x=y or y=z. - Clark Kimberling, May 31 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), pp. 4545-4558.

Crossrefs

Cf. A143804.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015

Programs

  • Magma
    [(n + 1)*(3*n^2 + 3*n + 1): n in [0..50]]; // Vincenzo Librandi, May 16 2011
    
  • Maple
    A005915:=(1+10*z+7*z**2)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n+1)(3n^2+3n+1),{n,0,50}]  (* Harvey P. Dale, Mar 31 2011 *)
    LinearRecurrence[{4,-6,4,-1},{1,14,57,148},50] (* Harvey P. Dale, Jun 25 2011 *)
  • PARI
    a(n) = (n + 1)*(3*n^2 + 3*n + 1);

Formula

a(n) = (n+1)^3 + 6*(n*(n+1)*(2*n+1)/6). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=14, a(2)=57, a(3)=148. - Harvey P. Dale, Jun 25 2011
G.f.: (1+10*x+7*x^2)/(1-x)^4. - Harvey P. Dale, Jun 25 2011
Equals row sums of triangle A143804 and binomial transform of [1, 13, 30, 18, 0, 0, 0, ...]. - Gary W. Adamson, Sep 01 2008
2*a(n+1) = A213829(n). - Clark Kimberling, Jul 04 2012
E.g.f.: exp(x)*(1 + x)*(1 + 12*x + 3*x^2). - Elmo R. Oliveira, Aug 04 2025

Extensions

More terms from James Sellers, Dec 24 1999

A130748 Place n points on each of the three sides of a triangle, 3n points in all; a(n) = number of nondegenerate triangles that can be constructed using these points (plus the 3 original vertices) as vertices.

Original entry on oeis.org

17, 72, 190, 395, 711, 1162, 1772, 2565, 3565, 4796, 6282, 8047, 10115, 12510, 15256, 18377, 21897, 25840, 30230, 35091, 40447, 46322, 52740, 59725, 67301, 75492, 84322, 93815, 103995, 114886, 126512, 138897, 152065, 166040, 180846, 196507, 213047, 230490
Offset: 1

Views

Author

Denis Borris, Jul 12 2007

Keywords

Comments

Define b(1)=1 and b(n) = a(n-1) for n>1. Then (b(n)) is the principal diagonal of the convolution array A213833. - Clark Kimberling, Jul 04 2012

Examples

			5 points are put on each side of a triangle (n = 5); we then have 18 vertices to construct with: 5 * 3 + 3 originals. The number of total arrangements = combi(18,3) : combi[3(n+1),3]. But these include degenerates along the 3 sides: 7 points on each side, so combi(7,3) on each side : 3 * combi[n+2, 3] combi[18,3] - 3 * combi[7,3] = 816 - 105 = 711.
		

Crossrefs

Cf. A002414, A213833, A220084 (for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Programs

Formula

a(n) = C(3*(n+1),3) - 3*C(n+2,3) where n>0.
a(n) = (n+1)*A002414(n+1) - n*A002414(n). - Bruno Berselli, Dec 11 2012
a(n) = (8*n^3 + 15*n^2 + 9*n + 2)/2. - Charles R Greathouse IV, Feb 14 2013
From Elmo R. Oliveira, Aug 25 2025: (Start)
G.f.: x*(17 + 4*x + 4*x^2 - x^3)/(x-1)^4.
E.g.f.: -1 + exp(x)*(2 + 32*x + 39*x^2 + 8*x^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

Extensions

More terms from Wesley Ivan Hurt, Jan 28 2014

A213772 Principal diagonal of the convolution array A213771.

Original entry on oeis.org

1, 11, 42, 106, 215, 381, 616, 932, 1341, 1855, 2486, 3246, 4147, 5201, 6420, 7816, 9401, 11187, 13186, 15410, 17871, 20581, 23552, 26796, 30325, 34151, 38286, 42742, 47531, 52665, 58156, 64016, 70257, 76891, 83930, 91386, 99271, 107597, 116376, 125620, 135341
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Zhu Shijie gives in his Magnus Opus "Jade Mirror of the Four Unknowns" the problem: "The total number of apples in a pile in the form of a cone is 932, and the number of layers is an odd number." Zhu Shijie assumed the rational sequence s(k) = (k*(k+1)*(2*k+1)+k+1)/8 for the total number of apples in k layers, with n = (k+1)/2 is the solution 932 = a((15+1)/2) with k = 15. Zhu Shijie gave the solution polynomial: "Let the element tian be the number of layers. From the statement we have 7455 for the negative shi, 2 for the positive fang, 3 for the positive first lian, and 2 for the positive yu." This translates into the polynomial equation: 2*x^3 + 3*x^2 + 2*x - 7455 = 0. - Thomas Scheuerle, Feb 10 2025

References

  • Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 7, (1303).

Crossrefs

Cf. A000326, A002411, A085473, A213771, A220084 (for a list of numbers of the form n*P(k,n) - (n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Programs

  • Mathematica
    (See A213771.)
    LinearRecurrence[{4,-6,4,-1},{1,11,42,106},70] (* Harvey P. Dale, Mar 29 2025 *)
  • PARI
    a(n) = (4*n^3-3*n^2+n)/2; \\ Altug Alkan, Dec 16 2017

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(1 + 7*x + 4*x^2)/(1 - x)^4.
a(n) = (4*n^2 - 3*n + 1)*n/2 = n*A002411(n) - (n-1)*A002411(n-1). - Bruno Berselli, Dec 11 2012
a(n) = n*A000326(n) + Sum_{i=0..n-1} A000326(i). - Bruno Berselli, Dec 18 2013
a(n) - a(n-1) = A085473(n-1). - R. J. Mathar, Mar 02 2025
E.g.f.: exp(x)*x*(1 + 4*x)*(2 + x)/2. - Elmo R. Oliveira, Aug 08 2025

A100165 Structured rhombic triacontahedral numbers (vertex structure 7).

Original entry on oeis.org

1, 32, 147, 400, 845, 1536, 2527, 3872, 5625, 7840, 10571, 13872, 17797, 22400, 27735, 33856, 40817, 48672, 57475, 67280, 78141, 90112, 103247, 117600, 133225, 150176, 168507, 188272, 209525, 232320, 256711, 282752
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured pentakis dodecahedral numbers (vertex structure 7) (cf. A100173 = alternate vertex).

Crossrefs

Cf. A100164 = alternate vertex; A100145 for more on structured numbers.
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Programs

  • Magma
    [(1/6)*(54*n^3-72*n^2+24*n): n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
  • Mathematica
    Table[(3(n-1)+1)^2(3(n-1)+3)/3,{n,40}] (* Harvey P. Dale, Jan 02 2020 *)

Formula

a(n) = (1/6)*(54*n^3 - 72*n^2 + 24*n) = n*(3*n-2)^2.
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (3*(n-1) + 1)^2*(3*(n-1) + 3)/3.
G.f.: x*(1 + 28*x + 25*x^2)/(1-x)^4. (End)

A100162 Structured disdyakis dodecahedral numbers (vertex structure 7).

Original entry on oeis.org

1, 26, 117, 316, 665, 1206, 1981, 3032, 4401, 6130, 8261, 10836, 13897, 17486, 21645, 26416, 31841, 37962, 44821, 52460, 60921, 70246, 80477, 91656, 103825, 117026, 131301, 146692, 163241, 180990, 199981, 220256
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured deltoidal icositetrahedral numbers (vertex structure 7) (cf. A100161 = alternate vertex).

Crossrefs

Cf. A100161, A100163 = alternate vertices; A100145 for more on structured polyhedral numbers.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015

Programs

  • Magma
    [(1/6)*(42*n^3-54*n^2+18*n): n in [1..40]]; // Vincenzo Librandi, Jul 24 2011

Formula

a(n) = (1/6)*(42*n^3 - 54*n^2 + 18*n).
G.f.: x*(1 + 22*x + 19*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012

A214092 Principal diagonal of the convolution array A213773.

Original entry on oeis.org

1, 23, 102, 274, 575, 1041, 1708, 2612, 3789, 5275, 7106, 9318, 11947, 15029, 18600, 22696, 27353, 32607, 38494, 45050, 52311, 60313, 69092, 78684, 89125, 100451, 112698, 125902, 140099, 155325, 171616
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Crossrefs

Cf. A213773.
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Programs

  • Mathematica
    (See A213773.)
    LinearRecurrence[{4,-6,4,-1},{1,23,102,274},40] (* Harvey P. Dale, Nov 20 2015 *)

Formula

a(n) = (5*n - 15*n^2 + 12*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: f(x)/g(x), where f(x) = x*(1 + 19*x + 16*x^2) and g(x) = (1-x)^4.

A027849 a(n) = (n+1)*(5*n^2+4*n+1).

Original entry on oeis.org

1, 20, 87, 232, 485, 876, 1435, 2192, 3177, 4420, 5951, 7800, 9997, 12572, 15555, 18976, 22865, 27252, 32167, 37640, 43701, 50380, 57707, 65712, 74425, 83876, 94095, 105112, 116957, 129660, 143251
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Formula

From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (13*x^2 + 16*x + 1)/(x - 1)^4. (End)
Showing 1-8 of 8 results.