A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A260260
a(n) = n*(16*n^2 - 21*n + 7)/2.
Original entry on oeis.org
0, 1, 29, 132, 358, 755, 1371, 2254, 3452, 5013, 6985, 9416, 12354, 15847, 19943, 24690, 30136, 36329, 43317, 51148, 59870, 69531, 80179, 91862, 104628, 118525, 133601, 149904, 167482, 186383, 206655, 228346, 251504, 276177, 302413, 330260, 359766, 390979
Offset: 0
-
[n*(16*n^2-21*n+7)/2: n in [0..40]];
-
Table[n (16 n^2 - 21 n + 7)/2, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{0,1,29,132},40] (* Harvey P. Dale, May 08 2025 *)
-
vector(40, n, n--; n*(16*n^2-21*n+7)/2)
-
[n*(16*n^2-21*n+7)/2 for n in (0..40)]
A220084
a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.
Original entry on oeis.org
1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
Offset: 0
Cf.
A000292,
A000330,
A000566,
A002411,
A002412,
A002413,
A002414,
A051662,
A130748,
A212983,
A213772,
A213837.
-
[(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
-
/* By first comment: */ A002413:=func; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
-
I:=[1,15,62,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{1,15,62,162},40] (* Harvey P. Dale, Dec 23 2012 *)
CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
-
a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015
A213833
Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 7, 3, 24, 17, 5, 58, 48, 27, 7, 115, 102, 72, 37, 9, 201, 185, 146, 96, 47, 11, 322, 303, 255, 190, 120, 57, 13, 484, 462, 405, 325, 234, 144, 67, 15, 693, 668, 602, 507, 395, 278, 168, 77, 17, 955, 927, 852, 742, 609, 465
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....7....24....58....115
3....17...48....102...185
5....27...72....146...255
7....37...96....190...325
9....47...120...234...395
11...57...144...278...465
-
b[n_]:=3n-2;c[n_]:=2n-1;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213833 *)
Table[t[n,n],{n,1,40}] (* A130748 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
Table[s[n],{n,1,50}] (* A213834 *)
A302302
Number of triples (i,j,k) such that i+j+k > 0 with -n <= i,j,k <= n.
Original entry on oeis.org
0, 10, 53, 153, 334, 620, 1035, 1603, 2348, 3294, 4465, 5885, 7578, 9568, 11879, 14535, 17560, 20978, 24813, 29089, 33830, 39060, 44803, 51083, 57924, 65350, 73385, 82053, 91378, 101384, 112095, 123535, 135728, 148698, 162469, 177065, 192510, 208828, 226043
Offset: 0
-
a[n_]:=Total[Flatten[Table[Table[Table[If[i+j+k>0,1,0],{i,-n,n}],{j,-n,n}],{k,-n,n}]]];
Table[a[n],{n,0,32}]
-
a(n) = n*(3+9*n+8*n^2)/2; \\ Altug Alkan, Apr 08 2018
Showing 1-5 of 5 results.
Comments