A213834
Antidiagonal sums of the convolution array A213833.
Original entry on oeis.org
1, 10, 46, 140, 335, 686, 1260, 2136, 3405, 5170, 7546, 10660, 14651, 19670, 25880, 33456, 42585, 53466, 66310, 81340, 98791, 118910, 141956, 168200, 197925, 231426, 269010, 310996, 357715, 409510, 466736
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A081436
Fifth subdiagonal in array of n-gonal numbers A081422.
Original entry on oeis.org
1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Christian Barrientos, The number of spanning trees of cyclic snakes, Indones. J. Comb. (2025) Vol. 9, No. 1, 21-30. See p. 29.
- J. A. Dias da Silva and Pedro J. Freitas, Counting Spectral Radii of Matrices with Positive Entries, arXiv:1305.1139 [math.CO], 2013.
- Theorem of the Day, Lovász Local Lemma example involving intersecting pairs of multisets
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..40], n-> (n+1)*(2*(n+1)^2-n)/2); # G. C. Greubel, Aug 14 2019
-
[(2*n^3+5*n^2+5*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
A081436 := proc(n)
(n+1)*(2*n^2+3*n+2)/2 ;
end proc:
seq(A081436(n),n=0..60) ; # R. J. Mathar, Jun 26 2013
-
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 24, 58}, 40] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=n^3+5/2*n*(n+1)+1 \\ Charles R Greathouse IV, Jun 20 2013
-
[(n+1)*(2*(n+1)^2-n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
A130748
Place n points on each of the three sides of a triangle, 3n points in all; a(n) = number of nondegenerate triangles that can be constructed using these points (plus the 3 original vertices) as vertices.
Original entry on oeis.org
17, 72, 190, 395, 711, 1162, 1772, 2565, 3565, 4796, 6282, 8047, 10115, 12510, 15256, 18377, 21897, 25840, 30230, 35091, 40447, 46322, 52740, 59725, 67301, 75492, 84322, 93815, 103995, 114886, 126512, 138897, 152065, 166040, 180846, 196507, 213047, 230490
Offset: 1
5 points are put on each side of a triangle (n = 5); we then have 18 vertices to construct with: 5 * 3 + 3 originals. The number of total arrangements = combi(18,3) : combi[3(n+1),3]. But these include degenerates along the 3 sides: 7 points on each side, so combi(7,3) on each side : 3 * combi[n+2, 3] combi[18,3] - 3 * combi[7,3] = 816 - 105 = 711.
Cf.
A002414,
A213833,
A220084 (for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
Original entry on oeis.org
3, 17, 48, 102, 185, 303, 462, 668, 927, 1245, 1628, 2082, 2613, 3227, 3930, 4728, 5627, 6633, 7752, 8990, 10353, 11847, 13478, 15252, 17175, 19253, 21492, 23898, 26477, 29235, 32178, 35312, 38643, 42177, 45920, 49878, 54057, 58463, 63102, 67980, 73103
Offset: 1
-
I:=[3, 17, 48, 102]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 06 2012
-
A144640:= n-> n*(2*n^2 +5*n -1)/2; seq(A144640(n), n=1..40); # G. C. Greubel, Mar 01 2021
-
CoefficientList[Series[(3+5*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
-
[n*(2*n^2 +5*n -1)/2 for n in (1..40)] # G. C. Greubel, Mar 01 2021
Showing 1-5 of 5 results.
Comments