cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A260260 a(n) = n*(16*n^2 - 21*n + 7)/2.

Original entry on oeis.org

0, 1, 29, 132, 358, 755, 1371, 2254, 3452, 5013, 6985, 9416, 12354, 15847, 19943, 24690, 30136, 36329, 43317, 51148, 59870, 69531, 80179, 91862, 104628, 118525, 133601, 149904, 167482, 186383, 206655, 228346, 251504, 276177, 302413, 330260, 359766, 390979
Offset: 0

Views

Author

Bruno Berselli, Jul 21 2015

Keywords

Comments

Similar sequences, where P(s, m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number:
A000578: P(3, m)*P( 3, m) - P(3, m-1)*P( 3, m-1);
A213772: P(3, m)*P( 4, m) - P(3, m-1)*P( 4, m-1) for m>0;
A005915: P(3, m)*P( 5, m) - P(3, m-1)*P( 5, m-1) " ;
A130748: P(3, m)*P( 6, m) - P(3, m-1)*P( 6, m-1) for m>1;
A027849: P(3, m)*P( 7, m) - P(3, m-1)*P( 7, m-1) for m>0;
A214092: P(3, m)*P( 8, m) - P(3, m-1)*P( 8, m-1) " ;
A100162: P(3, m)*P( 9, m) - P(3, m-1)*P( 9, m-1) " ;
A260260: P(3, m)*P(10, m) - P(3, m-1)*P(10, m-1), this sequence;
A100165: P(3, m)*P(11, m) - P(3, m-1)*P(11, m-1) for m>0.

Crossrefs

Subsequence of A047275.
Sequences of the same type (see comment): A000578, A005915, A027849, A100162, A100165, A130748, A213772, A214092.

Programs

  • Magma
    [n*(16*n^2-21*n+7)/2: n in [0..40]];
  • Mathematica
    Table[n (16 n^2 - 21 n + 7)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,29,132},40] (* Harvey P. Dale, May 08 2025 *)
  • PARI
    vector(40, n, n--; n*(16*n^2-21*n+7)/2)
    
  • Sage
    [n*(16*n^2-21*n+7)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 25*x + 22*x^2)/(1 - x)^4. [corrected by Georg Fischer, May 10 2019]
a(n) = A000217(n)*A001107(n) - A000217(n-1)*A001107(n-1), with A000217(-1) = 0.
a(n) = A000292(n) + 25*A000292(n-1) + 22*A000292(n-2), with A000292(-2) = A000292(-1) = 0.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 27*x + 16*x^2)/2. - Elmo R. Oliveira, Aug 08 2025

A100164 Structured rhombic triacontahedral numbers (vertex structure 11).

Original entry on oeis.org

1, 32, 143, 384, 805, 1456, 2387, 3648, 5289, 7360, 9911, 12992, 16653, 20944, 25915, 31616, 38097, 45408, 53599, 62720, 72821, 83952, 96163, 109504, 124025, 139776, 156807, 175168, 194909, 216080, 238731, 262912, 288673, 316064, 345135, 375936, 408517, 442928
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis icosahedral numbers (vertex structure 11) (cf. A100172 = alternate vertex).

Crossrefs

Cf. A100165 (alternate vertex), A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(50*n^3-60*n^2+16*n): n in [1..40]]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    a[n_] := (n*(5*n - 2)*(5*n - 4))/3; Array[a, 30] (* Amiram Eldar, Sep 20 2022 *)

Formula

a(n) = (1/6)*(50*n^3 - 60*n^2 + 16*n) = (1/3)*n*(5*n-2)*(5*n-4).
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (5*(n-1) + 1)*(5*(n-1) + 3)*(5*(n-1) + 5)/15.
G.f.: x*(1 + 28*x + 21*x^2)/(1-x)^4. (End)
Sum_{n>=1} 1/a(n) = 3*sqrt((25-2*sqrt(5))/5)*Pi/16 + 9*sqrt(5)*log(phi)/16 - 15*log(5)/32, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 20 2022

A268759 Triangle T(n,k) read by rows: T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 9, 6, 0, 0, 10, 18, 18, 10, 0, 0, 15, 30, 36, 30, 15, 0, 0, 21, 45, 60, 60, 45, 21, 0, 0, 28, 63, 90, 100, 90, 63, 28, 0, 0, 36, 84, 126, 150, 150, 126, 84, 36, 0, 0, 45, 108, 168, 210, 225, 210, 168, 108, 45, 0, 0, 55, 135, 216, 280, 315
Offset: 0

Views

Author

Bradley Klee, Feb 20 2016

Keywords

Comments

Off-diagonal elements of angular momentum matrices J_1^2 and J_2^2.
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the block-diagonal, Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) satisfy:(1/2)T(n,k)^(1/2) = = = - = - . In the Dirac notation, we write elements m_{ij} of matrix M as =m_{ij}. Matrices for J_1^2 and J_2^2 are sparse. These equalities and the central-diagonal equalities of A141387 determine the only nonzero entries.
Notice that a(n) = T(n,k) is always a multiple of the triangular numbers, up to an offset. Conjecture: the triangle tabulating matrix elements is determined entirely by the coefficients: binomial(n,p) (cf. A094053). Various sequences along the diagonals of matrix J_1^p lead to other numbers with geometric interpretations (Cf. A000567, A100165).

Examples

			0;
0,  0;
1,  0,  0;
3,  3,  0,  0;
6,  9,  6,  0,  0;
10, 18, 18, 10, 0,  0;
15, 30, 36, 30, 15, 0, 0;
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[(1/4) (1 + k) (2 + k) (k - n) (1 + k - n), {n, 0, 10, 1}, {k, 0, n, 1}]]

Formula

T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).
G.f.: x^2/((1-x)^3(1-x*y)^3)

A100173 Structured pentakis dodecahedral numbers (vertex structure 6).

Original entry on oeis.org

1, 32, 148, 404, 855, 1556, 2562, 3928, 5709, 7960, 10736, 14092, 18083, 22764, 28190, 34416, 41497, 49488, 58444, 68420, 79471, 91652, 105018, 119624, 135525, 152776, 171432, 191548, 213179, 236380, 261206, 287712
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100165 = alternate vertex; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(55*n^3-75*n^2+26*n): n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,32,148,404},40] (* Harvey P. Dale, Aug 04 2022 *)

Formula

a(n) = (1/6)*(55*n^3 - 75*n^2 + 26*n).
G.f.: x*(1 + 28*x + 26*x^2)/(1-x)^4. - Colin Barker, May 29 2012
Showing 1-4 of 4 results.