A100229
Triangle, read by rows, of the coefficients of [x^k] in G100228(x)^n such that the row sums are 4^n-1 for n>0, where G100228(x) is the g.f. of A100228.
Original entry on oeis.org
1, 1, 2, 1, 4, 10, 1, 6, 21, 35, 1, 8, 36, 92, 118, 1, 10, 55, 185, 380, 392, 1, 12, 78, 322, 879, 1506, 1297, 1, 14, 105, 511, 1715, 3948, 5803, 4286, 1, 16, 136, 760, 3004, 8536, 17020, 21904, 14158, 1, 18, 171, 1077, 4878, 16344, 40395, 71109, 81387, 46763
Offset: 0
Rows begin:
[1],
[1,2],
[1,4,10],
[1,6,21,35],
[1,8,36,92,118],
[1,10,55,185,380,392],
[1,12,78,322,879,1506,1297],
[1,14,105,511,1715,3948,5803,4286],
[1,16,136,760,3004,8536,17020,21904,14158],...
where row sums form 4^n-1 for n>0:
4^1-1 = 1+2 = 3
4^2-1 = 1+4+10 = 15
4^3-1 = 1+6+21+35 = 63
4^4-1 = 1+8+36+92+118 = 255
4^5-1 = 1+10+55+185+380+392 = 1023.
The main diagonal forms A100230 = [1,2,10,35,118,392,1297,...],
where Sum_{n>=1} A100230(n)/n*x^n = log((1-x)/(1-3*x-x^2)).
Original entry on oeis.org
1, 2, 10, 35, 118, 392, 1297, 4286, 14158, 46763, 154450, 510116, 1684801, 5564522, 18378370, 60699635, 200477278, 662131472, 2186871697, 7222746566, 23855111398, 78788080763, 260219353690, 859446141836, 2838557779201
Offset: 0
-
LinearRecurrence[{4,-2,-1},{1,2,10},30] (* Harvey P. Dale, May 06 2012 *)
-
a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-3*x-x^2)+x*O(x^n)),n))
A100225
G.f. A(x) satisfies: 3^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (3+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.
Original entry on oeis.org
1, 1, 2, 0, -4, 0, 16, 0, -80, 0, 448, 0, -2688, 0, 16896, 0, -109824, 0, 732160, 0, -4978688, 0, 34398208, 0, -240787456, 0, 1704034304, 0, -12171673600, 0, 87636049920, 0, -635361361920, 0, 4634400522240, 0, -33985603829760, 0, 250420238745600, 0, -1853109766717440
Offset: 0
From the table of powers of A(x) (A100226), we see that
3^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,1],2,0,-4,0,16,0,-80,...
A^2=[1,2,5],4,-4,-8,16,32,-80,...
A^3=[1,3,9,13],6,-12,-4,48,0,...
A^4=[1,4,14,28,33],8,-24,16,80,...
A^5=[1,5,20,50,85,81],10,-40,60,..
A^6=[1,6,27,80,171,246,197],12,-60,...
the main diagonal of which is A100227 = [1,5,13,33,81,197,477,...], where Sum_{n>=1} (A100227(n)/n)*x^n = log((1-x)/(1-2*x-x^2)).
-
a(n)=if(n==0,1,(3^n-1-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
-
a(n)=if(n==0,1,if(n==1,1,if(n==2,2,-8*(n-3)*a(n-2)/n)))
-
a(n)=polcoeff((1+2*x+sqrt(1+8*x^2+x^2*O(x^n)))/2,n)
A100231
G.f. A(x) satisfies: 5^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (5+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.
Original entry on oeis.org
1, 3, 4, -8, 0, 64, -192, -128, 2816, -7680, -13312, 157696, -352256, -1179648, 9748480, -16220160, -99614720, 630456320, -651427840, -8218214400, 41481666560, -13191086080, -667334737920, 2724661821440, 1460876083200, -53446942130176, 175607589634048, 286761410363392
Offset: 0
From the table of powers of A(x) (A100232), we see that
5^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,3],4,-8,0,64,-192,-128,...
A^2=[1,6,17],8,-32,64,64,-896,...
A^3=[1,9,39,75],12,-72,256,-384,...
A^4=[1,12,70,220,321],16,-128,640,...
A^5=[1,15,110,470,1165,1363],20,-200,...
A^6=[1,18,159,852,2895,5922,5777],24,...
-
a(n)=if(n==0,1,(5^n-1-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
-
a(n)=if(n==0,1,if(n==1,3,if(n==2,4,-((4*n-6)*a(n-1)+20*(n-3)*a(n-2))/n)))
-
a(n)=polcoeff((1+4*x+sqrt(1+4*x+20*x^2+x^2*O(x^n)))/2,n)
Showing 1-4 of 4 results.
Comments