cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100239 G.f. A(x) satisfies: 3^n + 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (3+z)^n + (1+z)^n - z^n = Sum_{k=0..n} [x^k](A(x) + z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.

Original entry on oeis.org

1, 3, -3, 9, -36, 162, -783, 3969, -20817, 112023, -615033, 3431403, -19398690, 110880900, -639730305, 3720657807, -21790419444, 128398625658, -760668489729, 4528069760691, -27070491820644, 162464919528222, -978463778897637, 5911727071716891, -35821932198013809
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2004

Keywords

Examples

			From the table of powers of A(x), we see that
3^n+1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1 = [1,  3], -3,    9,  -36,  162, -783, 3969, -20817, 112023, ...
A^2 = [1,  6,   3],   0,   -9,   54, -297, 1620,  -8910,  49572, ...
A^3 = [1,  9,  18,    0],   0,    0,  -27,  243,  -1701,  10935, ...
A^4 = [1, 12,  42,   36,   -9],   0,    0,    0,    -81,    972, ...
A^5 = [1, 15,  75,  135,   45,  -27],   0,    0,      0,      0, ...
A^6 = [1, 18, 117,  324,  324,    0,  -54],   0,      0,      0, ...
A^7 = [1, 21, 168,  630, 1071,  567, -189,  -81],     0,      0, ...
A^8 = [1, 24, 228, 1080, 2610, 2808,  540, -648,    -81],     0, ...
the main diagonal of which is:
[x^n]A(x)^(n+1) = (n+1)*A057083(n) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 3^n*Boole[n<2] + 3*(-1)^(n+1)*Sum[Binomial[k+1, n-k-1]*Binomial[n-2,k]*3^k/(k+1), {k,0,n-2}];
    Table[a[n], {n,0,40}] (* G. C. Greubel, May 21 2022 *)
  • PARI
    a(n)=if(n==0, 1, (3^n+1-sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)
    
  • PARI
    a(n)=polcoeff((1+3*x+sqrt(1+6*x-3*x^2+x^2*O(x^n)))/2,n)
    
  • SageMath
    def A100239_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+3*x+sqrt(1+6*x-3*x^2))/2 ).list()
    A100239_list(40) # G. C. Greubel, May 21 2022

Formula

G.f.: A(x) = (1+3*x+sqrt(1+6*x-3*x^2))/2.
Given g.f. A(x), then B(x) = A(x) - (1+2*x) series reversion is -B(-x). - Michael Somos, Sep 07 2005
Given g.f. A(x) and C(x) = g.f. of A025226, then B(x)=A(x)-1-2x satisfies B(x) = x - C(x*B(x)). - Michael Somos, Sep 07 2005
a(n) = 3^n*[n<2] + 3*(-1)^(n+1)*A107264(n-2). - G. C. Greubel, May 21 2022