cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100261 Continued fraction expansion of cot(1-Pi/4).

Original entry on oeis.org

4, 1, 1, 2, 2, 1, 16, 1, 4, 2, 5, 1, 28, 1, 7, 2, 8, 1, 40, 1, 10, 2, 11, 1, 52, 1, 13, 2, 14, 1, 64, 1, 16, 2, 17, 1, 76, 1, 19, 2, 20, 1, 88, 1, 22, 2, 23, 1, 100, 1, 25, 2, 26, 1, 112, 1, 28, 2, 29, 1, 124, 1, 31, 2, 32, 1, 136, 1, 34, 2, 35, 1, 148, 1, 37, 2, 38, 1, 160, 1, 40
Offset: 1

Views

Author

Ralf Stephan, Nov 18 2004

Keywords

Examples

			4.588037824983899981397906503733748769677138839382189177607356840...
		

References

  • Lipshitz, Leonard, and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.

Crossrefs

Cf. A005131.

Programs

  • Mathematica
    ContinuedFraction[ -Im[(E^(2I) + I)/(E^(2I) - I)], 80] (* Robert G. Wilson v, Nov 20 2004 *)
    ContinuedFraction[Cot[1-Pi/4],100] (* Harvey P. Dale, Feb 26 2025 *)
  • PARI
    A100261(n) = if(1==n,4,if(n<4,1, n=n-4; my(k=n\6); if(!(n%6), 2, if(1==(n%6), 3*k + 2, if(3==(n%6), 12*k + 16, if(5==(n%6), 3*k + 4, 1)))))); \\ Antti Karttunen, Feb 15 2023

Formula

This number is also -Im[ (e^(2i)+i)/(e^(2i)-i) ].
Periodic part is ...2, 3k+2, 1, 12k+16, 1, 3k+4, ... (k=0..oo).
G.f.: -x*(x^11-x^10+2*x^9-2*x^8+x^7-8*x^6-x^5-2*x^4-2*x^3-x^2-x-4) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). - Colin Barker, Jul 15 2013
cot(1 - Pi/4) = (sin(1) + cos(1))/((sin(1) - cos(1))) = A143623/|A143624|. - Peter Bala, Jun 17 2025