cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100321 The trinomial transform (A027907) gives powers of 2, while the trinomial transform of this sequence shift one place left gives powers of 3.

Original entry on oeis.org

1, 1, 0, 2, -3, 8, -16, 35, -72, 150, -307, 628, -1276, 2587, -5228, 10546, -21235, 42704, -85784, 172179, -345344, 692286, -1387155, 2778492, -5563748, 11138443, -22294596, 44617850, -89282067, 178639160, -357399712, 714995843, -1430309496, 2861133222, -5723098483, 11447543236
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2004

Keywords

Examples

			2^3 = 1*(1) + 3*(1) + 6*(0) + 7*(2) + 6*(-3) + 3*(8) + 1*(-16).
3^3 = 1*(1) + 3*(0) + 6*(2) + 7*(-3) + 6*(8) + 3*(-16) + 1*(35).
		

Crossrefs

Programs

  • Magma
    [((-1)^n*(3*Fibonacci(n-1) -2^n) +1)/3: n in [0..40]]; // G. C. Greubel, Feb 01 2023
    
  • Mathematica
    LinearRecurrence[{-2,2,3,-2}, {1,1,0,2}, 41] (* G. C. Greubel, Feb 01 2023 *)
  • PARI
    a(n)=polcoeff((1+3*x-3*x^3)/(1+2*x-2*x^2-3*x^3+2*x^4+x*O(x^n)),n)
    
  • SageMath
    def A100321(n): return ((-1)^n*(3*fibonacci(n-1) -2^n) +1)/3
    [A100321(n) for n in range(41)] # G. C. Greubel, Feb 01 2023

Formula

G.f.: (1 + 3*x - 3*x^3) / (1 + 2*x - 2*x^2 - 3*x^3 + 2*x^4).
2^n = Sum_{k=0..2*n} A027907(n, k)*a(k).
3^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1).
a(n) = (1/3)*((-1)^n*(3*Fibonacci(n-1) - 2^n) + 1). - Ralf Stephan, May 15 2007