A100471 Number of integer partitions of n whose sequence of frequencies is strictly increasing.
1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 18, 20, 27, 32, 40, 44, 60, 67, 82, 93, 114, 129, 161, 175, 209, 239, 285, 315, 372, 416, 484, 545, 631, 698, 811, 890, 1027, 1146, 1304, 1437, 1631, 1805, 2042, 2252, 2539, 2785, 3143, 3439, 3846, 4226, 4722, 5159
Offset: 0
Keywords
Examples
a(4) = 4 because of the 5 unrestricted partitions of 4, only one, 3+1 uses each of its summands just once and 1,1 is not an increasing sequence. From _Gus Wiseman_, Jan 23 2019: (Start) The a(1) = 1 through a(8) = 11 integer partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (311) (33) (322) (44) (211) (2111) (222) (511) (422) (1111) (11111) (411) (4111) (611) (3111) (22111) (2222) (21111) (31111) (5111) (111111) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111) (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..8000 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Haskell
a100471 n = p 0 (n + 1) 1 n where p m m' k x | x == 0 = if m < m' || m == 0 then 1 else 0 | x < k = 0 | m == 0 = p 1 m' k (x - k) + p 0 m' (k + 1) x | otherwise = p (m + 1) m' k (x - k) + if m < m' then p 0 m (k + 1) x else 0 -- Reinhard Zumkeller, Dec 27 2012
-
Maple
b:= proc(n,i,t) option remember; if n<0 then 0 elif n=0 then 1 elif i=1 then `if`(n>t, 1, 0) elif i=0 then 0 else b(n, i-1, t) +add(b(n-i*j, i-1, j), j=t+1..floor(n/i)) fi end: a:= n-> b(n, n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==1, If[n>t, 1, 0], i == 0, 0 , True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t+1, Floor[n/i]}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],OrderedQ@*Split]],{n,20}] (* Gus Wiseman, Jan 23 2019 *)
Extensions
Corrected and extended by Vladeta Jovovic, Nov 24 2004
Name edited by Gus Wiseman, Jan 23 2019