cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006997 Partitioning integers to avoid arithmetic progressions of length 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 4, 3, 3, 4, 0, 0, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 4, 3, 3, 4, 1, 2, 2, 3, 3, 4, 3, 3, 4, 4, 5, 5, 4, 5, 5, 6, 6, 7, 4, 5, 5, 4, 5, 5, 6, 6, 7, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

a(n) = 0 iff n in A005836.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(3n+k) = floor((3*a(n)+k)/2), 0 <= k <= 2.
a(n) = A100480(n+1) - 1. - Pontus von Brömssen, Apr 09 2025

A361933 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression in any order.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 9, 4, 2, 5, 11, 2, 2, 4, 1, 1, 5, 1, 1, 10, 2, 2, 4, 1, 1, 4, 4, 10, 10, 4, 8, 10, 10, 2, 4, 1, 2, 5, 4, 10, 10, 4, 2, 8, 8, 5, 8, 5, 13, 13, 17, 5, 13, 2, 11, 17, 10, 10, 13, 13
Offset: 1

Views

Author

Neal Gersh Tolunsky, Mar 30 2023

Keywords

Comments

First differs from A229037 and A309890 at a(28).
This sequence avoids all six of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1).
This sequence is part of a family of variants avoiding different permutations of arithmetic progressions at indices in arithmetic progression:
- A100480 (offset 1), A006997 (offset 0): Prohibits 1,1,1 and progressions of common difference 0.
- A309890: Prohibits 1,2,3 or progressions of the form c, c+d, c+2d, for all d >= 0.
- A373111: Prohibits 1,3,2 or progressions of the form c, c+2d, c+d, for all d >= 0.
- A371457: Prohibits 2,1,3 or progressions of the form c, c-d, c+d, for all d >= 0.
- A371632: Prohibits 2,3,1 or progressions of the form c, c+d, c-d, for all d >= 0.
- A373010: Prohibits 3,1,2 or progressions of the form c, c-2d, c-d, for all d>=0.
- A373052: Prohibits 3,2,1 or progressions of the form c, c-d, c-2d, for all d>=0.
With the sequences prohibiting the six permutations above, there are a total of 64 sequences which prohibit some combination of these six permutations of an arithmetic progression. At least two more of these are in the OEIS:
- A229037 ("forest fire sequence"): Prohibits (progressions of the same general form as) 1,2,3 and 3,2,1 .
- A361933 (the present sequence): Prohibits all six permutations.

Examples

			a(28) cannot be 1 because then a(26)=5, a(27)=9, and a(28)=1 could be rearranged to form an arithmetic progression (1, 5, 9). The numbers 2-8 could also create an arithmetic progression so a(28)=9.
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

a(n) <= (n+1)/2.

A371632 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a progression of the form p, p+q, p-q, where q >= 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 2, 4, 1, 3, 2, 1, 3, 2, 3, 4, 1, 2, 3, 4, 3, 4, 4, 5, 4, 1, 5, 5, 4, 1, 4, 2, 5, 5, 6, 5, 5, 6, 6, 7, 7, 3, 7, 6, 6, 8, 6, 6, 5, 7, 7, 8, 7, 1, 8, 8, 9, 9, 8, 5, 3, 9, 9, 10, 9, 6, 8, 8, 5, 9, 9, 5, 8, 6, 10, 1, 7, 10, 6, 6, 4, 4, 8, 3, 10
Offset: 1

Views

Author

Neal Gersh Tolunsky, May 24 2024

Keywords

Comments

This sequence avoids one of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). In this sequence, we avoid (2,3,1) and other progressions of the form p, p+q, p-q, for all q >= 0.

Crossrefs

A373010 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a progression of the form p, p-2*q, p-q, where q >= 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 3, 1, 1, 2, 4, 3, 3, 4, 3, 2, 2, 4, 4, 2, 2, 5, 1, 1, 3, 1, 1, 2, 4, 4, 5, 1, 1, 3, 1, 1, 5, 4, 5, 3, 6, 5, 6, 5, 4, 6, 6, 4, 3, 4, 3, 3, 4, 3, 6, 2, 6, 5, 7, 3, 6, 6, 3, 2, 7, 6, 7, 5, 5, 2, 2, 6, 2, 2, 4, 5, 1, 1, 2, 1, 1, 5, 2, 6, 7
Offset: 1

Views

Author

Neal Gersh Tolunsky, May 22 2024

Keywords

Comments

This sequence avoids one of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). In this sequence, we avoid (3,1,2) and other progressions of the form p, p-2*q, p-q, for all q >= 0.

Crossrefs

Formula

a(n)=1 iff n in A003278.

A373052 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a weakly decreasing arithmetic progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 5, 4, 4, 5, 1, 3, 2, 4, 1, 1, 2, 1, 3, 2, 4, 2, 5, 1, 2, 2, 1, 3, 3, 4, 3, 4, 5, 2, 4, 3, 5, 5, 6, 3, 4, 3, 6, 4, 4, 5, 5, 4, 5, 5, 6, 6, 7, 6, 6, 7, 7, 5, 8, 6, 8, 6, 7, 7, 2, 7, 7, 2, 8
Offset: 1

Views

Author

Neal Gersh Tolunsky, May 20 2024

Keywords

Crossrefs

Programs

  • PARI
    \\ See Links section.

A373111 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a progression of the form c, c+2d, c+d, where d >= 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 3, 1, 1, 4, 4, 3, 2, 3, 3, 4, 4, 5, 4, 4, 5, 5, 1, 1, 4, 1, 1, 5, 5, 6, 5, 1, 1, 6, 1, 1, 2, 2, 5, 2, 2, 5, 6, 6, 7, 2, 2, 7, 2, 2, 8, 7, 6, 5, 6, 8, 8, 9, 5, 6, 9, 8, 9, 2, 2, 7, 3, 2, 8, 2, 3, 8, 7, 3, 7, 4, 1, 1, 6, 1, 1, 9, 8
Offset: 1

Views

Author

Neal Gersh Tolunsky, May 25 2024

Keywords

Comments

This sequence avoids one of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). In this sequence, we avoid (1,3,2) and other progressions of the form c, c+2d, c+d, for all d >= 0.

Crossrefs

Formula

a(n)=1 iff n in A003278.

A371457 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a progression of the form p, p-q, p+q, where q >= 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 4, 3, 2, 6, 5, 5, 6, 3, 4, 3, 4, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 6, 4, 2, 4, 6, 8, 6, 5, 8, 4, 6, 2, 7, 5, 11, 5, 5, 7, 6, 11, 4, 9, 6, 7, 9, 7, 5, 4, 3, 8, 9, 5, 5, 8, 3, 5, 3, 3, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Neal Gersh Tolunsky, Jun 01 2024

Keywords

Comments

This sequence avoids one of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). In this sequence, we avoid (2,1,3) and other progressions of the form p, p-q, p+q, for all q >= 0.

Crossrefs

Formula

a(n)=1 iff n in A003278.

A262057 Array based on the Stanley sequence S(0), A005836, by antidiagonals.

Original entry on oeis.org

0, 2, 1, 7, 5, 3, 21, 8, 6, 4, 23, 22, 16, 11, 9, 64, 26, 24, 17, 14, 10, 69, 65, 50, 25, 19, 15, 12, 71, 70, 67, 53, 48, 20, 18, 13, 193, 80, 78, 68, 59, 49, 34, 29, 27, 207, 194, 152, 79, 73, 62, 51, 35, 32, 28, 209, 208, 196, 161, 150, 74, 63, 52, 43, 33, 30
Offset: 1

Views

Author

Max Barrentine, Nov 29 2015

Keywords

Comments

This array is similar to a dispersion in that the first column is the minimal nonnegative sequence that contains no 3-term arithmetic progression, and each next column is the minimal sequence consisting of the numbers rejected from the previous column that contains no 3-term arithmetic progression.
A100480(n) describes which column n is sorted into.
The columns of the array form the greedy partition of the nonnegative integers into sequences that contain no 3-term arithmetic progression. - Robert Israel, Feb 03 2016

Examples

			From the top-left corner, this array starts:
   0   2   7  21  23  64
   1   5   8  22  26  65
   3   6  16  24  50  67
   4  11  17  25  53  68
   9  14  19  48  59  73
  10  15  20  49  62  74
		

Crossrefs

First column is A005836.
First row is A265316.

Programs

  • MATLAB
    function  A = A262057( M, N )
    % to get first M antidiagonals using x up to N
    B = cell(1,M);
    F = zeros(M,N+1);
    countdowns = [M:-1:1];
    for x=0:N
        if max(countdowns) == 0
            break
        end
        for i=1:M
            if F(i,x+1) == 0
                newforb = 2*x - B{i};
                newforb = newforb(newforb <= N & newforb >= 1);
                F(i,newforb+1) = 1;
                B{i}(end+1) = x;
                countdowns(i) = countdowns(i)-1;
                break
            end
        end
    end
    if max(countdowns) > 0
        [~,jmax] = max(countdowns);
        jmax = jmax(1);
        error ('Need larger N: B{%d} has only %d elements',jmax,numel(B{jmax}));
    end
    A = zeros(1,M*(M+1)/2);
    k = 0;
    for n=1:M
        for i=1:n
            k=k+1;
            A(k) = B{n+1-i}(i);
        end
    end
    end % Robert Israel, Feb 03 2016
  • Maple
    M:= 20: # to get the first M antidiagonals
    for i from 1 to M do B[i]:= {}: F[i]:= {}: od:
    countdowns:= Vector(M,j->M+1-j):
    for x from 0 while max(countdowns) > 0 do
      for i from 1 do
         if not member(x, F[i]) then
           F[i]:= F[i] union map(y -> 2*x-y, B[i]);
           B[i]:= B[i] union {x};
           countdowns[i]:= countdowns[i] - 1;
         break
        fi
      od;
    od:
    seq(seq(B[n+1-i][i], i=1..n),n=1..M); # Robert Israel, Feb 03 2016

Formula

A006997(A(n, k)) = k - 1. - Rémy Sigrist, Jan 06 2024

A370408 Lexicographically earliest sequence of positive integers such that no three equal terms appear at distinct indices that are the side lengths of a triangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 4, 1, 5, 5, 2, 3, 6, 6, 7, 1, 7, 4, 8, 8, 2, 3, 9, 5, 9, 10, 10, 11, 1, 4, 11, 6, 12, 12, 13, 13, 2, 7, 3, 5, 14, 14, 15, 8, 15, 16, 16, 17, 17, 1, 6, 18, 4, 9, 18, 19, 19, 10, 20, 7, 20, 21, 2, 11, 21, 3, 22, 22, 5, 8, 23, 12, 23, 24, 24, 13, 25, 25, 26, 26, 27, 27, 28, 1, 9, 28, 29, 4
Offset: 1

Views

Author

Neal Gersh Tolunsky, Feb 17 2024

Keywords

Comments

In a triangle, the sum of any two side lengths is greater than that of the third, so that x + y > z.
So if x < y and a(x) = a(y) = t then we cannot have a(z) = t for any z in the range y < z < x+y.
Another way to construct the sequence: Place 1's at the earliest permitted positions (in this case, at Fibonacci indices). Each subsequent value (2’s, 3’s, etc.) is placed at the earliest permitted indices not already occupied by a smaller value. For example, 3's could be placed in a Fibonacci pattern beginning with 7, 9 (7, 9, 16, 25, etc.), but i=7+9=16 is already occupied by the value 2, so 3 gets the next smallest position i=17. i=9+17=26 is again occupied by a 2, so we give 3 the next smallest unoccupied position i=27.

Crossrefs

Cf. A367196, A107572 (triangle side lengths), A100480.

Programs

  • Mathematica
    list={1};Do[k=1;While[lst=Join[list,{k}];!And@@(And@@(({a,b,c}=#;(-a+b+c)(a-b+c)(a+b-c))<=0&/@Subsets[Flatten[Position[lst,#]],{3}])&/@Union@lst),k++];AppendTo[list,k],{n,92}];list (* Giorgos Kalogeropoulos, Feb 20 2024 *)
  • Python
    from itertools import combinations as C, count, islice
    def agen(): # generator of terms
        yield from [1, 1, 1]
        sides = {1: [1, 2, 3]}
        for n in count(4):
            an = next(an for an in count(1) if an not in sides or all(not all((nMichael S. Branicky, Feb 24 2024

Extensions

More terms from Giorgos Kalogeropoulos, Feb 20 2024

A370822 Lexicographically earliest sequence of positive integers such that all equal terms appear at mutually coprime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 4, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 7, 14, 1, 15, 1, 16, 8, 17, 3, 18, 1, 19, 10, 20, 1, 21, 1, 22, 11, 23, 1, 24, 2, 25, 13, 26, 1, 27, 6, 28, 14, 29, 1, 30, 1, 31, 16, 32, 7, 33, 1, 34, 17, 35, 1, 36, 1, 37, 19
Offset: 1

Views

Author

Neal Gersh Tolunsky, Mar 02 2024

Keywords

Comments

See A279119 for the same sequence with numbers including 0.
See A055396 for a similar sequence where all equal terms share a factor > 1.

Examples

			a(4)=2 because if we had a(4)=1, then i=2 and i=4, which are not coprime indices, would have the same value 1. So a(4)=2, which is a first occurrence.
a(9)=2 because if we had a(9)=1, i=3 and i=9, would have the same value despite not being coprime indices. a(9) can be 2 because the only other index with a 2 is a(4)=2 and 4 is coprime to 9.
a(15)=4 because 4 is the smallest value such that every previous index at which a 4 occurs is coprime to i=15. In this case, 4 has only occurred at i=8 and 8 is coprime to 15.
		

Crossrefs

Programs

  • Python
    from math import gcd, lcm
    from itertools import combinations as C, count, islice
    def agen(): # generator of terms
        yield from [1, 1, 1]
        lcms = {1: 6}
        for n in count(4):
            an = next(an for an in count(1) if an not in lcms or gcd(lcms[an], n) == 1)
            yield an
            if an not in lcms: lcms[an] = n
            else: lcms[an] = lcm(lcms[an], n)
    print(list(islice(agen(), 75))) # Michael S. Branicky, Mar 02 2024

Formula

a(n) = 1 + A279119(n). - Rémy Sigrist, Mar 04 2024

Extensions

a(22) and beyond from Michael S. Branicky, Mar 02 2024
Showing 1-10 of 10 results.