A100518 Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.
1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
Offset: 0
Examples
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..770
Programs
-
Magma
[Numerator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Mathematica
Numerator[Table[Sum[1/Binomial[n,k]^3,{k,0,n}],{n,0,20}]] (* Harvey P. Dale, Sep 28 2012 *)
-
PARI
a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 24 2022
-
SageMath
[numerator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
Formula
a(n) = numerator( Sum_{k=0..n} 1/binomial(n,k)^3 ).