cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100525 Bisection of A048654.

Original entry on oeis.org

4, 22, 128, 746, 4348, 25342, 147704, 860882, 5017588, 29244646, 170450288, 993457082, 5790292204, 33748296142, 196699484648, 1146448611746, 6681992185828, 38945504503222, 226991034833504, 1323000704497802, 7711013192153308, 44943078448422046
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 24 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,22,128]; [n le 3 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 13 2015
    
  • Mathematica
    CoefficientList[Series[(4-2x)/(1-6x+x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 13 2015 *)
    LinearRecurrence[{6,-1},{4,22},30] (* Harvey P. Dale, Mar 25 2016 *)
  • PARI
    Vec((4-2*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
    
  • SageMath
    [2*(2*chebyshev_U(n,3) - chebyshev_U(n-1,3)) for n in (0..30)] # G. C. Greubel, Jun 28 2022

Formula

G.f.: 2*(2-x)/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008
a(0)=4, a(1)=22, a(n) = 6*a(n-1) - a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
a(n) = 2*A038725(n+1). - R. J. Mathar, Sep 27 2014
a(n) = ( (5 + 4*sqrt(2))*(3 + 2*sqrt(2))^n - (5 - 4*sqrt(2))*(3 - 2*sqrt(2))^n )/(2*sqrt(2)). - Colin Barker, Oct 13 2015
From G. C. Greubel, Jun 28 2022: (Start)
a(n) = 2*( 2*ChebyshevU(n, 3) - ChenyshevU(n-1, 3) ).
E.g.f.: 2*exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (5/(2*sqrt(2)))*sinh(2*sqrt(2)*x) ). (End)