cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129346 a(2n) = A100525(n), a(2n+1) = A001653(n+1); a Pellian-related sequence.

Original entry on oeis.org

4, 5, 22, 29, 128, 169, 746, 985, 4348, 5741, 25342, 33461, 147704, 195025, 860882, 1136689, 5017588, 6625109, 29244646, 38613965, 170450288, 225058681, 993457082, 1311738121, 5790292204, 7645370045, 33748296142, 44560482149, 196699484648, 259717522849
Offset: 0

Views

Author

Creighton Dement, Apr 10 2007

Keywords

Comments

Summation of -a(n) and A129345 returns twice Pell numbers A000129 (apart from signs; starting from 2nd term of A000129).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{4,5,22,29},30] (* Harvey P. Dale, Apr 08 2018 *)
  • PARI
    Vec((4+5*x-2*x^2-x^3)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^40)) \\ Colin Barker, May 26 2016

Formula

O.g.f.: (4 + 5*x - 2*x^2 - x^3) / ((x^2 - 2*x - 1)*(x^2 + 2*x - 1)).
From Colin Barker, May 26 2016: (Start)
a(n) = (-(-1-sqrt(2))^(1+n)+(-1+sqrt(2))^(1+n)+(1-sqrt(2))^n*(-4+3*sqrt(2))+(1+sqrt(2))^n*(4+3*sqrt(2)))/(2*sqrt(2)).
a(n) = 6*a(n-2)-a(n-4) for n>3. (End)
E.g.f.: 2*cosh(sqrt(2)*x)*(sinh(x) + 2*cosh(x)) + (sinh(sqrt(2)*x)*(5*sinh(x) + 3*cosh(x)))/sqrt(2). - Ilya Gutkovskiy, May 26 2016

A048654 a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 9, 22, 53, 128, 309, 746, 1801, 4348, 10497, 25342, 61181, 147704, 356589, 860882, 2078353, 5017588, 12113529, 29244646, 70602821, 170450288, 411503397, 993457082, 2398417561, 5790292204
Offset: 0

Views

Author

Keywords

Comments

Generalized Pellian with second term equal to 4.
The generalized Pellian with second term equal to s has the terms a(n) = A000129(n)*s + A000129(n-1). The generating function is -(1+s*x-2*x)/(-1+2*x+x^2). - R. J. Mathar, Nov 22 2007

Crossrefs

Programs

  • Haskell
    a048654 n = a048654_list !! n
    a048654_list =
       1 : 4 : zipWith (+) a048654_list (map (* 2) $ tail a048654_list)
    -- Reinhard Zumkeller, Aug 01 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!((1+2*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
    
  • Mathematica
    LinearRecurrence[{2,1},{1,4},30] (* Harvey P. Dale, Jul 27 2011 *)
  • Maxima
    a[0]:1$
    a[1]:4$
    a[n]:=2*a[n-1]+a[n-2]$
    A048654(n):=a[n]$
    makelist(A048654(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    a(n)=(([0, 1; 1,2]^n)*[1,4]~)[1] \\ Charles R Greathouse IV, May 18 2015
    
  • SageMath
    [lucas_number1(n+1,2,-1) +2*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Aug 09 2022

Formula

a(n) = ((3+sqrt(2))*(1+sqrt(2))^n - (3-sqrt(2))*(1-sqrt(2))^n)/2*sqrt(2).
a(n) = 2*A000129(n+2) - 3*A000129(n+1). - Creighton Dement, Oct 27 2004
G.f.: (1+2*x)/(1-2*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = binomial transform of 1, 3, 2, 6, 4, 12, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
E.g.f.: exp(x)*cosh(sqrt(2)*x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Vaclav Kotesovec, Feb 16 2015
a(n) is the denominator of the continued fraction [4, 2, ..., 2, 4] with n-1 2's in the middle. For the numerators, see A221174. - Greg Dresden and Tongjia Rao, Sep 02 2021
a(n) = A001333(n) + A000129(n). - G. C. Greubel, Aug 09 2022

A266504 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.

Original entry on oeis.org

2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

This sequence gives all x in N | 2*x^2 - 7(-1)^x = y^2. The companion sequence to this sequence, giving y values, is A266505.
A266505(n)/a(n) converges to sqrt(2).
Alternatively, 1/4*(3*A002203(floor[n/2]) - A002203(n-(-1)^n)), where A002203 gives the Companion Pell numbers, or, in Lucas sequence notation, V_n(2, -1).
Alternatively, bisection of A266506.
Alternatively, A048654(n -1) and A078343(n + 1) interlaced.
Alternatively, A100525(n-1), A266507(n), A038761(n) and A253811(n) interlaced.
Let b(n) = (a(n) - a(n)(mod 2))/2, that is b(n) = {1, 1, 0, 1, 2, 4, 4, 9, 11, 23, 26, 55, 64, ...}. Then:
A006452(n) = {b(4n+0) U b(4n+1)} gives n in N such that n^2 - 1 is triangular;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that n^2 + n + 1 is triangular (indices of Sophie Germain triangular numbers);
A216162(n) = {b(4n+0) U b(4n+2) U b(4n+1) U b(4n+3)}, sequences A006452 and A216134 interlaced.

Crossrefs

Programs

  • Magma
    I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = 1/sqrt(8)*(+sqrt(2)*(1+sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n - 3*(1-sqrt(2))^(floor(n/2)-(-1)^n) + sqrt(2)*(1-sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n + 3*(1+sqrt(2))^(floor(n/2)-(-1)^n)).
a(n) = 1/4*((3*((1+sqrt(2))^floor(n/2)+(1-sqrt(2))^floor(n/2))) - (-1)^n*((1+sqrt(2))^(floor(n/2)-(-1)^n)+(1-sqrt(2))^(floor(n/2)-(-1)^n))).
a(2n) = (+sqrt(2)*(1+sqrt(2))^(n-1) - 3 *(1-sqrt(2))^(n-1) + sqrt(2)*(1-sqrt(2))^(n-1) + 3*(1 + sqrt(2))^(n-1))/sqrt(8) = A048654(n -1).
a(2n) = 1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) - ((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))) = A048654(n -1).
a(2n + 1) = (-sqrt(2)*(1+sqrt(2))^(n+1) - 3 *(1-sqrt(2))^(n+1) - sqrt(2)*(1-sqrt(2))^(n+1) + 3*(1+sqrt(2))^(n+1))/sqrt(8) = A078343(n + 1).
a(2n + 1) =1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) + ((1+sqrt(2))^(n+1)+(1-sqrt(2))^(n+1))) = A078343(n + 1).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A100525(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A266507(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038761(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A253811(n).
sqrt(2*a(n)^2 - 7(-1)^a(n))*sgn(2*n - 1) = A266505(n).
(a(2n + 1) + a(2n))/2 = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 1) - a(2n))/2 = A000129(n), where A000129 gives the Pell numbers.
(a(2n+2) + a(2n+1))*2 = A002203(n+2)
(a(2n+2) - a(2n+1))*2 = A002203(n-1).
G.f.: (1-x)*(2+4*x+x^2) / (1-2*x^2-x^4). - Colin Barker, Dec 31 2015

A266505 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.

Original entry on oeis.org

-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

a(n)/A266504(n) converges to sqrt(2).
Alternatively, bisection of A266506.
Alternatively, A135532(n) and A048655(n) interlaced.
Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced.
Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then:
A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1).

Crossrefs

Programs

  • Magma
    I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end:  seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018

Formula

G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2*x^2 - x^4).
a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2.
a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)).
a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers.
a(n) = sqrt(2*A266504(n)^2 - 7*(-1)^A266504(n))*sgn(2*n-1), where A266504 gives all x in N such that 2*x^2 - 7*(-1)^x = y^2. This sequence gives associated y values.
a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n).
a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n).
a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n).
a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n).
(sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n).
(a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers.
a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 2) + a(2n + 1))/2 = A000129(n+2).
(a(2n + 2) - a(2n + 1))/2 = A000129(n-1).

A217975 Integers k such that 2*k^2 - 7 is a square.

Original entry on oeis.org

2, 4, 8, 22, 46, 128, 268, 746, 1562, 4348, 9104, 25342, 53062, 147704, 309268, 860882, 1802546, 5017588, 10506008, 29244646, 61233502, 170450288, 356895004, 993457082, 2080136522, 5790292204, 12123924128, 33748296142, 70663408246, 196699484648
Offset: 1

Views

Author

Sture Sjöstedt, Oct 16 2012

Keywords

Comments

a(n) gives y-values solving the Diophantine equation x^2 + 7 = 2*y^2. A077446(n) gives the x-values. - Sture Sjöstedt, Oct 16 2012
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 28 = 0. - Colin Barker, Feb 08 2014

Examples

			Since 2(4^2) - 7 = 25 = 5^2, and 4 is the second number with this property, a(2) = 4.
		

Crossrefs

Cf. A077442 (2*n^2 + 7 is a square).

Programs

  • Magma
    I:=[2, 4, 8, 22]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..31]]; // Vincenzo Librandi, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {2, 4, 8, 22}, 50] (* Sture Sjöstedt, Oct 16 2012 *)
  • PARI
    Vec(2*x*(1-x)*(x^2+3*x+1)/(x^2-2*x-1)/(x^2+2*x-1)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012

Formula

a(n) = 6*a(n - 2) - a(n - 4) with a(1)=2, a(2)=4, a(3)=8, a(4)=22. - Sture Sjöstedt, Oct 16 2012
a(n)*a(n+3)-a(n+1)*a(n+2) = 10-2*(-1)^n. - Bruno Berselli, Oct 25 2012
a(n) = 2*A006452(n). - R. J. Mathar, Oct 17 2012
G.f.: -2*x*(x - 1)*(x^2 + 3*x + 1)/((x^2 - 2*x - 1)*(x^2 + 2*x - 1)). - Colin Barker, Oct 24 2012
a(n) = a(-n+1) = ((4+sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor(n/2))+(4-sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor(n/2)))/4. - Bruno Berselli, Oct 25 2012
a(2n-1) = A078343(2n-1), a(2n) = A100525(n-1). - Bruno Berselli, Oct 25 2012
Showing 1-5 of 5 results.