cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100548 Number of n-node labeled digraphs without endpoints.

Original entry on oeis.org

1, 1, 1, 28, 2539, 847126, 987474781, 4267529230672, 71328353711113801, 4706871807383903992060, 1236666872833000506726110479, 1297665884376581511952494336126664, 5444003907104081585974782986977125743035, 91341304409373044577470623665964376840167100920
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 02 2005

Keywords

Crossrefs

Cf. A059167, A101388 (labeled case).

Programs

  • Magma
    m:=30;
    f:= func< x | Exp(3*x^2/2)*(&+[ 2^(n*(n-1))*(x*Exp(-3*x))^n/Factorial(n) : n in [0..m+2]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 27 2023
    
  • Mathematica
    m = 11;
    egf = Exp[3x^2/2]*Sum[2^(n(n-1))*(x/Exp[3 x])^n/n!, {n, 0, m}];
    a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
  • PARI
    seq(n)={my(g=x/exp(3*x + O(x*x^n))); Vec(serlaplace(exp(3*x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1))*g^k/k!)))} \\ Andrew Howroyd, Jan 08 2020
    
  • SageMath
    m = 30
    def f(x): return exp(3*x^2/2)*sum( 2^(n*(n-1))*(x*exp(-3*x))^n/factorial(n) for n in range(m+2) )
    def A100548_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A100548_list(m) # G. C. Greubel, Mar 27 2023

Formula

E.g.f.: exp(3/2*x^2)*(Sum_{n>=0} 2^(n*(n-1))*(x/exp(3*x))^n/n!).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 08 2020