A100575 Half the number of permutations of 0..n with exactly two maxima.
0, 0, 1, 8, 44, 208, 912, 3840, 15808, 64256, 259328, 1042432, 4180992, 16748544, 67047424, 268304384, 1073463296, 4294377472, 17178624000, 68716855296, 274872401920, 1099500093440, 4398022393856, 17592135712768, 70368639320064
Offset: 0
Keywords
Examples
a(2)=1 because there are two maxima in 2,0,1 and 1,0,2
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16).
Crossrefs
Cf. A000431.
Programs
-
Magma
[4^(n-1)-(n+1)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Jul 18 2019
-
Mathematica
d = Drop[ Flatten[ CoefficientList[ Table[ Simplify[ D[1/(2 - E^x), {x, n}]*(E^x - 2)^(n + 1)/E^x], {n, 2, 24}], E^x]], 1]; a = {}; Do[AppendTo[a, Abs[d[[n(n + 1)/2]]]], {n, 23}]; a (* Robert G. Wilson v, Dec 01 2004 *) LinearRecurrence[{8,-20,16},{0,0,1},30] (* Harvey P. Dale, Apr 21 2020 *)
-
Sage
[2^(n-2)*(2^n -(n+1)) for n in (0..30)] # G. C. Greubel, Mar 21 2022
Formula
From Paul Barry, Jan 28 2005: (Start)
G.f.: x^2/((1-2*x)^2*(1-4*x)).
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*floor(k/2). (End)
a(n) = 4^(n-1) - (n+1)*2^(n-2). - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007
a(n+1) = Sum_{k=0..n} k*2^(2*n-1-k). - Philippe Deléham , Oct 29 2013
E.g.f.: (1/4)*(exp(4*x) - (1 + 2*x)*exp(2*x)). - G. C. Greubel, Mar 21 2022
Extensions
Edited by Robert G. Wilson v, Dec 01 2004
Definition corrected by Bruno Petazzoni (bruno(AT)enix.org), Apr 13 2007
New and simpler definition from R. H. Hardin, Aug 09 2007
Comments