cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100575 Half the number of permutations of 0..n with exactly two maxima.

Original entry on oeis.org

0, 0, 1, 8, 44, 208, 912, 3840, 15808, 64256, 259328, 1042432, 4180992, 16748544, 67047424, 268304384, 1073463296, 4294377472, 17178624000, 68716855296, 274872401920, 1099500093440, 4398022393856, 17592135712768, 70368639320064
Offset: 0

Views

Author

Anthony C Robin, Nov 29 2004

Keywords

Comments

Coefficient of the e^(2x) term in the numerator of the n-th derivative of 1/(2-e^x).
This sequence, multiplied by 8, appears in a combinatorial problem about DNA chips. - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007

Examples

			a(2)=1 because there are two maxima in 2,0,1 and 1,0,2
		

Crossrefs

Cf. A000431.

Programs

  • Magma
    [4^(n-1)-(n+1)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Jul 18 2019
    
  • Mathematica
    d = Drop[ Flatten[ CoefficientList[ Table[ Simplify[ D[1/(2 - E^x), {x, n}]*(E^x - 2)^(n + 1)/E^x], {n, 2, 24}], E^x]], 1]; a = {}; Do[AppendTo[a, Abs[d[[n(n + 1)/2]]]], {n, 23}]; a (* Robert G. Wilson v, Dec 01 2004 *)
    LinearRecurrence[{8,-20,16},{0,0,1},30] (* Harvey P. Dale, Apr 21 2020 *)
  • Sage
    [2^(n-2)*(2^n -(n+1)) for n in (0..30)] # G. C. Greubel, Mar 21 2022

Formula

From Paul Barry, Jan 28 2005: (Start)
G.f.: x^2/((1-2*x)^2*(1-4*x)).
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*floor(k/2). (End)
a(n) = 4^(n-1) - (n+1)*2^(n-2). - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007
a(n+1) = Sum_{k=0..n} k*2^(2*n-1-k). - Philippe Deléham , Oct 29 2013
E.g.f.: (1/4)*(exp(4*x) - (1 + 2*x)*exp(2*x)). - G. C. Greubel, Mar 21 2022

Extensions

Edited by Robert G. Wilson v, Dec 01 2004
Definition corrected by Bruno Petazzoni (bruno(AT)enix.org), Apr 13 2007
New and simpler definition from R. H. Hardin, Aug 09 2007