A100774 a(n) = 2*(3^n - 1).
0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..196
- Eric Weisstein's World of Mathematics, Graph Diameter
- Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[2*(3^n - 1): n in [0..25] ]; // Vincenzo Librandi, Apr 30 2011
-
Mathematica
Table[2 (3^n - 1), {n, 0, 24}] (* Alonso del Arte, Nov 08 2012 *) 2 (3^Range[0, 20] - 1) (* Eric W. Weisstein, Mar 13 2018 *) LinearRecurrence[{4, -3}, {4, 16}, {0, 20}] (* Eric W. Weisstein, Mar 13 2018 *) CoefficientList[Series[4 x/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 13 2018 *)
-
Maxima
A100774(n):=2*(3^n - 1)$ makelist(A100774(n),n,0,30); /* Martin Ettl, Nov 09 2012 */
-
PARI
a(n)=2*3^n-2 \\ Charles R Greathouse IV, Nov 09 2012
Formula
a(n) = 2*(3^n - 1).
a(n) = 4*Sum_{i=0..n-1} 3^i.
a(n) = 4*A003462(n).
a(n) = A048473(n) - 1. - Paul Curtz, Jan 19 2009
G.f.: 4*x/((1-x)*(1-3*x)). - Eric W. Weisstein, Mar 13 2018
a(n) = 4*a(n-1) - 3*a(n-2). - Eric W. Weisstein, Mar 13 2018
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = 2*A024023(n).
a(n) = 3*a(n-1) + 4 for n>0.
E.g.f.: 2*(exp(3*x) - exp(x)). (End)
Comments