cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100774 a(n) = 2*(3^n - 1).

Original entry on oeis.org

0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
Offset: 0

Views

Author

Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005

Keywords

Comments

a(n) is the number of steps which are made when generating all n-step nonreversing random walks that begin in a fixed point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice.
These are also the first local maxima reached in the Collatz trajectories of 2^n - 1. - David Rabahy, Oct 30 2017
Also the graph diameter of the n-Sierpinski carpet graph. - Eric W. Weisstein, Mar 13 2018
a(n) is the number of edge covers of F_{n,2}, which has adjacent vertices u and w, and n vertices each adjacent to both u and w. An edge cover is a subset of the edges where each vertex is adjacent to at least one vertex. To cover each of the n vertices v_i, we need to have at least the edge uv_i or wv_i or both, giving us three choices for each. We can then add the edge uw or not, which is 2*3^n choices. But we need to remove the case where all uv_i's were chosen and uw not chosen, and all ww_i's were chosen and uw not chosen. - Feryal Alayont, Jun 17 2024

Crossrefs

Programs

Formula

a(n) = 2*(3^n - 1).
a(n) = 4*Sum_{i=0..n-1} 3^i.
a(n) = 4*A003462(n).
a(n) = A048473(n) - 1. - Paul Curtz, Jan 19 2009
G.f.: 4*x/((1-x)*(1-3*x)). - Eric W. Weisstein, Mar 13 2018
a(n) = 4*a(n-1) - 3*a(n-2). - Eric W. Weisstein, Mar 13 2018
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = 2*A024023(n).
a(n) = 3*a(n-1) + 4 for n>0.
E.g.f.: 2*(exp(3*x) - exp(x)). (End)