cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309507 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1

Views

Author

Alois P. Heinz, Aug 05 2019

Keywords

Comments

Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(n+1) + k*(k+1) - m*(m+1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A053141. - Bradley Klee, Mar 01 2020; edited by N. J. A. Sloane, Mar 31 2020

Examples

			a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
		

Crossrefs

Cf. A000217, A001108, A046079 (the same for squares), A068194, A100821 (the same for primes for n>1), A309332.
See also A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in A333529.

Programs

  • Maple
    with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
  • Mathematica
    TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
          (TNn + TNn^2 - # + #^2)/(2 #)} & /@
        Complement[Divisors[TNn (TNn + 1)], {TNn}],
       And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
    Length[TriTriples[#]] & /@ Range[100]
    (* Bradley Klee, Mar 01 2020 *)

Formula

a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
a(n) = A092517(n) - A063440(n) - 1. - Ridouane Oudra, Dec 08 2023

A322976 Number of divisors d of n such that d+2 is prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 4, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 1, 4, 1, 2, 4, 1, 1, 3, 2, 3, 3, 1, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 2, 1, 2, 4, 1, 1, 4, 3, 1, 3, 2, 2, 4, 1, 1, 4, 1, 3, 3, 1, 2, 3, 3, 2, 3, 1, 1, 4, 1, 3, 3, 1, 2, 5, 2, 1, 3, 3, 1, 4, 2, 1, 6, 1, 1, 2, 1, 3, 2, 1, 1, 5, 2, 2, 4, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Examples

			10395 has 32 divisors: [1, 3, 5, 7, 9, 11, 15, 21, 27, 33, 35, 45, 55, 63, 77, 99, 105, 135, 165, 189, 231, 297, 315, 385, 495, 693, 945, 1155, 1485, 2079, 3465, 10395]. When 2 is added to each, as 1+2 = 3, 3+2 = 5, 5+2 = 7, etc, the only sums that are primes are: [3, 5, 7, 11, 13, 17, 23, 29, 37, 47, 79, 101, 107, 137, 167, 191, 233, 317, 947, 1487, 2081, 3467], thus (a10395) = 22.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, PrimeQ[# + 2] &] &, 105] (* Michael De Vlieger, Jan 04 2019 *)
  • PARI
    A322976(n) = sumdiv(n, d, isprime(d+2));

Formula

a(n) = Sum_{d|n} A010051(d+2).
a(A000040(n)) = 1 + A100821(n).

A100810 a(n) = 0 if prime(n) + 2 = prime(n+1), otherwise 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 05 2005

Keywords

Examples

			a(2) = 0 because prime(2) + 2 = 5 = prime(3).
a(3) = 0 because prime(3) + 2 = 7 = prime(4).
		

Programs

  • Maple
    a:= n-> `if`(isprime(ithprime(n)+2), 0, 1):
    seq(a(n), n=1..105);  # Alois P. Heinz, Oct 02 2020
  • Mathematica
    Table[If[Prime[n] + 2 == Prime[n + 1], 0, 1], {n, 120}] (* Ray Chandler, Jan 09 2005 *)
    If[#[[2]]-#[[1]]==2,0,1]&/@Partition[Prime[Range[110]],2,1] (* Harvey P. Dale, Mar 05 2016 *)

Formula

a(n) = 1 - A100821(n) = 1 - A062301(n+1).

Extensions

Corrected and extended by Ray Chandler, Jan 09 2005
Showing 1-3 of 3 results.