A309507 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.
0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1
Keywords
Examples
a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14). a(7) = 1: T(7) = T(28)-T(27). a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35). a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44). a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224). The triples with n <= 16 are: 2, 2, 3 3, 5, 6 4, 9, 10 5, 3, 6 5, 6, 8 5, 14, 15 6, 5, 8 6, 9, 11 6, 20, 21 7, 27, 28 8, 10, 13 8, 35, 36 9, 4, 10 9, 6, 11 9, 13, 16 9, 21, 23 9, 44, 45 10, 8, 13 10, 26, 28 10, 54, 55 11, 14, 18 11, 20, 23 11, 65, 66 12, 17, 21 12, 24, 27 12, 77, 78 13, 9, 16 13, 44, 46 13, 90, 91 14, 5, 15 14, 11, 18 14, 14, 20 14, 18, 23 14, 33, 36 14, 51, 53 14, 104, 105 15, 21, 26 15, 38, 41 15, 119, 120 16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
Crossrefs
Programs
-
Maple
with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
-
Mathematica
TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #), (TNn + TNn^2 - # + #^2)/(2 #)} & /@ Complement[Divisors[TNn (TNn + 1)], {TNn}], And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]] Length[TriTriples[#]] & /@ Range[100] (* Bradley Klee, Mar 01 2020 *)
Formula
a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
Comments