A100883 Number of partitions of n in which the sequence of frequencies of the summands is nondecreasing.
1, 1, 2, 3, 5, 6, 11, 13, 19, 26, 36, 43, 64, 77, 102, 129, 169, 205, 268, 323, 413, 504, 629, 751, 947, 1131, 1384, 1661, 2024, 2393, 2919, 3442, 4136, 4884, 5834, 6836, 8162, 9531, 11262, 13155, 15493, 17981, 21138, 24472, 28571, 33066, 38475, 44305
Offset: 0
Keywords
Examples
a(5) = 6 because, of the 7 unrestricted partitions of 5, only one, 2 + 2 + 1, has a decreasing sequence of frequencies. Two is used twice, but 1 is used only once.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(i=1, `if`(n>=t, 1, 0), `if`(i=0, 0, b(n, i-1, t)+ add(b(n-i*j, i-1, j), j=t..floor(n/i)))))) end: a:= n-> b(n$2, 1): seq(a(n), n=0..60); # Alois P. Heinz, Jul 03 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n<0, 0, If[n == 0, 1, If[i == 1, If[n >= t, 1, 0], If[i == 0, 0, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t, Floor[n/i]}]]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],OrderedQ[Length/@Split[#]]&]],{n,20}] (* Gus Wiseman, Jan 21 2019 *)
Extensions
More terms from Vladeta Jovovic, Nov 23 2004
Comments