cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A101048 Number of partitions of n into semiprimes (a(0) = 1 by convention).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 2, 3, 1, 5, 3, 5, 4, 7, 4, 9, 7, 10, 8, 13, 10, 17, 13, 18, 17, 25, 21, 29, 25, 34, 34, 43, 37, 51, 49, 61, 59, 73, 69, 89, 87, 103, 103, 124, 122, 148, 149, 172, 176, 206, 208, 244, 248, 281, 293, 337, 344, 391, 405, 456, 479, 537, 553
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 28 2004

Keywords

Comments

Semiprime analog of A000607. a(n) <= A002095(n). - Jonathan Vos Post, Oct 01 2007
Das, Robles, Zaharescu, & Zeindler give an asymptotic formula, see Links. - Charles R Greathouse IV, Jan 20 2023

Examples

			a(12) = #{6 + 6, 4 + 4 + 4} = #{2 * (2*3), 3 * (2*2)} = 2.
		

Crossrefs

Programs

  • Haskell
    a101048 = p a001358_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    g:=1/product(product(1-x^(ithprime(i)*ithprime(j)),i=1..j),j=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..71); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, b(n-i, h(min(n-i, i))))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 19 2021
  • Mathematica
    terms = 100; CoefficientList[1/Product[1 - x^(Prime[i] Prime[j]), {i, 1, PrimePi[Ceiling[terms/2]]}, {j, 1, i}] + O[x]^terms, x] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    issemi(n)=if(n<4, return(0)); forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    allsemi(v)=for(i=1,#v, if(!issemi(v[i]), return(0))); 1
    a(n)=my(s); if(n<4, return(n==0)); forpart(k=n, if(allsemi(k), s++),[4,n]); s \\ Charles R Greathouse IV, Jan 20 2023

Formula

G.f.: 1/product(product(1-x^(p(i)p(j)), i = 1..j),j = 1..infinity), p(k) is the k-th prime. - Emeric Deutsch, Apr 04 2006

Extensions

a(0) set to 1 by N. J. A. Sloane, Nov 23 2007

A112313 Number of partitions of n into products of 3 primes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 3, 0, 2, 0, 3, 0, 1, 1, 5, 0, 3, 1, 5, 0, 4, 1, 7, 2, 4, 2, 9, 0, 7, 2, 10, 2, 9, 3, 13, 3, 10, 3, 17, 2, 14, 7, 18, 5, 18, 5, 25, 6, 22, 9, 31, 7, 27, 13, 34, 10, 36, 12, 45, 15, 40, 19, 54, 15, 52, 24, 63, 22, 67, 26
Offset: 0

Views

Author

Jonathan Vos Post, Sep 02 2005

Keywords

Examples

			a(32) = 3 since 32 = 20+12 = 12+12+8 = 8+8+8+8.
		

Crossrefs

Extensions

Extended by Ray Chandler, Sep 02 2005

A112314 Number of partitions of n into products of 4 primes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 3, 0, 1, 0, 5, 1, 0, 0, 4, 0, 1, 0, 7, 0, 2, 0, 4, 0, 2, 0, 9, 1, 0, 0, 7, 0, 2, 0, 10, 1
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Sep 02 2005

Keywords

Examples

			a(48) = 2 since 48 = 24+24 = 16+16+16.
		

Crossrefs

A112315 Number of partitions of n into products of 5 primes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Sep 02 2005

Keywords

Examples

			a(96) = 2 since 96 = 48+48 = 32+32+32.
		

Crossrefs

A112316 Number of partitions of n into products of 6 primes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Sep 02 2005

Keywords

Examples

			a(160) = 2 since 160 = 96+64.
		

Crossrefs

Showing 1-5 of 5 results.