A101103 Partial sums of A101104. First differences of A005914.
1, 13, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212, 1236, 1260
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq., Vol. 16 (2013) , Article 13.5.7.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A073762.
Programs
-
GAP
Concatenation([1,13],List([3..60],n->24*n-36)); # Muniru A Asiru, Dec 02 2018
-
Magma
I:=[36,60]; [1,13] cat [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 01 2018
-
Maple
seq(coeff(series(x*(1+x)*(1+10*x+x^2)/(1-x)^2,x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 02 2018
-
Mathematica
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 2, 2}, {k, 0, 34}] OR SeriesAtLevelR = Sum[Eulerian[n, i - 1]*Binomial[n + x - i + r, n + r], {i, 1, n}]; Table[SeriesAtLevelR, {n, 4, 4}, {r, -3, -3}, {x, 3, 35}] Join[{1, 13},LinearRecurrence[{2, -1},{36, 60},33]] (* Ray Chandler, Sep 23 2015 *)
-
PARI
my(x='x+O('x^60)); Vec(x*(1+x)*(1+10*x+x^2)/(1-x)^2) \\ G. C. Greubel, Dec 01 2018
-
Sage
s=(x*(1+x)*(1+10*x+x^2)/(1-x)^2).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018
Formula
a(n) = 2*a(n-1) - a(n-2), n > 4.
G.f.: x*(1+x)*(1 + 10*x + x^2)/(1-x)^2.
a(n) = 24*n - 36, n >= 3.
a(n) = Sum_{j=0..n} (-1)^j*binomial(3, j)*(n - j)^4. [Indices shifted, Nov 01 2010]
a(n) = Sum_{i=1..4} A008292(4,i)*binomial(n-i+1,1). [Indices shifted, Nov 01 2010]
Sum_{n>=1} (-1)^(n+1)/a(n) = 157/156 - Pi/48. - Amiram Eldar, Jan 26 2022
Extensions
Removed redundant information already in A101104. Reduced formulas by expansion of constants - R. J. Mathar, Nov 01 2010
Comments