A254681 Fifth partial sums of fourth powers (A000583).
1, 21, 176, 936, 3750, 12342, 35112, 89232, 207207, 446875, 906048, 1743248, 3206268, 5670588, 9690000, 16062144, 25912029, 40797009, 62837104, 94875000, 140670530, 205134930, 294610680, 417203280, 583171875, 805386231
Offset: 1
Examples
Fourth differences: 1, 12, 23, 24, (repeat 24) ... (A101104) Third differences: 1, 13, 36, 60, 84, 108, ... (A101103) Second differences: 1, 14, 50, 110, 194, 302, ... (A005914) First differences: 1, 15, 65, 175, 369, 671, ... (A005917) ------------------------------------------------------------------------- The fourth powers: 1, 16, 81, 256, 625, 1296, ... (A000583) ------------------------------------------------------------------------- First partial sums: 1, 17, 98, 354, 979, 2275, ... (A000538) Second partial sums: 1, 18, 116, 470, 1449, 3724, ... (A101089) Third partial sums: 1, 19, 135, 605, 2054, 5778, ... (A101090) Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... (A101091) Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... (this sequence)
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers .
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
Magma
[Binomial(n+5,6)*n*(n+5)*(2*n+5)/42: n in [1..30]]; // G. C. Greubel, Dec 01 2018
-
Maple
seq(coeff(series((x+11*x^2+11*x^3+x^4)/(1-x)^10,x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 02 2018
-
Mathematica
Table[n^2(1+n)(2+n)(3+n)(4+n)(5+n)^2(5+2n)/30240, {n,26}] (* or *) CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(1-x)^10, {x,0,25}], x] CoefficientList[Series[(1/30240)E^x (30240 + 604800 x + 2041200 x^2 + 2368800 x^3 + 1233540 x^4 + 326592 x^5 + 46410 x^6 + 3540 x^7 + 135 x^8 + 2 x^9), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 02 2018 *) Nest[Accumulate[#]&,Range[30]^4,5] (* Harvey P. Dale, Jan 03 2022 *)
-
PARI
my(x='x+O('x^30)); Vec((x+11*x^2+11*x^3+x^4)/(1-x)^10) \\ G. C. Greubel, Dec 01 2018
-
Sage
[binomial(n+5,6)*n*(n+5)*(2*n+5)/42 for n in (1..30)] # G. C. Greubel, Dec 01 2018
Formula
G.f.:(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^10.
a(n) = n^2*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)^2*(5 + 2*n)/30240.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^4.
E.g.f.: (1/30240)*exp(x)*(30240 + 604800*x + 2041200*x^2 + 2368800*x^3 + 1233540*x^4 + 326592*x^5 + 46410*x^6 + 3540*x^7 + 135*x^8 + 2*x^9). - Stefano Spezia, Dec 02 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 172032*log(2)/125 - 2382233/2500.
Sum_{n>=1} (-1)^(n+1)/a(n) = 42*Pi^2/25 - 43008*Pi/125 + 2663213/2500. (End)
Comments