cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101168 Lengths of successive words (starting with a) under the substitution: {a -> aab, b -> aac, c -> a}.

Original entry on oeis.org

1, 3, 9, 25, 71, 201, 569, 1611, 4561, 12913, 36559, 103505, 293041, 829651, 2348889, 6650121, 18827671, 53304473, 150914409, 427265435, 1209664161, 3424773601, 9696140959, 27451493281, 77720042081, 220039211683, 622970000809, 1763738467065, 4993456147431
Offset: 0

Views

Author

Jeroen F.J. Laros, Jan 22 2005

Keywords

Examples

			a => aab => aabaabaac => aabaabaacaabaabaacaabaaba, thus a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 25.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|2|2>>^n. <<1, 3, 9>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 06 2011
  • Mathematica
    Length/@SubstitutionSystem[{a->{a,a,b},b->{a,a,c},c->a},{a},15] (* The program generates the first 16 terms of the sequence. To generate more, increase the final ("15") constant. *) (* Harvey P. Dale, Sep 05 2022 *)
  • Maxima
    a(n):=b(n+1);
    b(n):= sum(sum((sum(binomial(j,n+1-m-3*k+2*j) *binomial(k,j), j,0, k)) *sum(binomial(i,m-i) *binomial(k+i-1,k-1),i,ceiling(m/2),m), m,0, n+1-k), k,1,n+1); /* Vladimir Kruchinin, May 05 2011 */

Formula

a(n) = 2*a(n-1) + 2*a(n-2) + a(n-3).
G.f.: (1+x+x^2) / (1-2*x-2*x^2-x^3).
a(n-1) = sum(k=1..n, sum(m=0..n-k, (sum(j=0..k, binomial(j, n-m-3*k+2*j) *binomial(k, j))) *sum(i=ceiling(m/2)..m, binomial(i, m-i)*binomial(k+i-1, k-1)))). - Vladimir Kruchinin, May 05 2011