cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190940 Number of divisors of LCM(1,2,...,n)/n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 12, 8, 16, 18, 48, 32, 96, 72, 64, 48, 240, 128, 480, 288, 320, 384, 960, 512, 960, 1152, 960, 1152, 3840, 3072, 7680, 3072, 6912, 7680, 6144, 6144, 18432, 15360, 13824, 12288, 36864, 23040, 73728, 49152, 49152, 61440, 147456, 73728, 147456, 122880
Offset: 1

Views

Author

Naohiro Nomoto, May 24 2011

Keywords

Comments

Also, number of sequences of d1 = 1 < d2 < ... < dk = n for some k >= 1 that are the first k divisors of some integer (cf. A378314). - Max Alekseyev, Nov 22 2024
Also, the number of distinct values taken by lcm(a,a+b,a+b+c,...,n), where positive integers a,b,c,... run over the compositions a+b+c+...=n. - Conjectured by Ridouane Oudra, Aug 24 2019; proved by Max Alekseyev, Nov 22 2024
Proof. It is clear that n | lcm(a,a+b,...,n) | lcm(1,2,...,n). Hence, lcm(a,a+b,...,n) = d*n for some d | lcm(1,2,...,n)/n. We'll show that each such d is achievable. Suppose d*n has prime factorization p1^e1 * ... * pk^ek with p1^e1 < ... < pk^ek. It is clear that pk^ek <= n, and we can take a composition (a,b,c,...) = (p1^e1, p2^e2 - p1^e1, p3^e3 - p2^e2, ..., pk^ek - p(k-1)^e(k-1), n - pk^ek), which delivers lcm(a,a+b,a+b+c,...,n) = p1^e1 * ... * pk^ek = d*n. QED - Max Alekseyev, Nov 22 2024

Examples

			Examples: for n=3 the a(3) = 2 distinct values are 3, 6. The compositions are 3, 1+2, 2+1, and 1+1+1. The values of the lcm are lcm(3)=3, lcm(1,1+2)=3, lcm(2,2+1)=6, and lcm(1,1+1,1+1+1)=6.
		

Crossrefs

First difference of A378314.

Programs

  • Maple
    Lpsum := proc(L) local ps,k ; ps := [op(1,L)] ; for i from 2 to nops(L) do ps := [op(ps), op(-1,ps)+op(i,L)] ; end do: ps ; end proc:
    A190940 := proc(n) local lc,k,c ; lc := {} ; for k from 1 to n do for c in combinat[composition](n,k) do lc := lc union { ilcm( op(Lpsum(c))) }; end do: end do: nops(lc) ; end proc: # R. J. Mathar, Jun 02 2011
  • Mathematica
    a[n_] := LCM @@@ (Accumulate /@ (Permutations /@ Rest[IntegerPartitions[n]] // Flatten[#, 1]&)) // Union // Length; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Feb 27 2014 *)

Formula

a(n) = A000005(A002944(n)).

Extensions

a(12)-a(20) from R. J. Mathar, Jun 02 2011
a(21)-a(24) from Alois P. Heinz, Nov 03 2011
Edited and terms a(25) onward added by Max Alekseyev, Nov 22 2024

A056793 Number of divisors of lcm(1..n).

Original entry on oeis.org

1, 2, 4, 6, 12, 12, 24, 32, 48, 48, 96, 96, 192, 192, 192, 240, 480, 480, 960, 960, 960, 960, 1920, 1920, 2880, 2880, 3840, 3840, 7680, 7680, 15360, 18432, 18432, 18432, 18432, 18432, 36864, 36864, 36864, 36864, 73728, 73728, 147456, 147456, 147456, 147456
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

The ratio a(n)/a(n-1) equals 1 if n is a member of A024619, equals 2 if n is prime, and is a noninteger value if n is in A025475. The noninteger ratio never seems to exceed 3/2, but appears to equal 3/2 if n is a member of A001248. The noninteger ratio conforms to the formula 1/(1 - 1/n), which has 1 for limit and only 2 as single integer solution. In terms of coordinates (x,y), the lower values are (1/(1-1/n), 2^(n-1)) for n > 2. - Eric Desbiaux, Jul 28 2013
Conjectured partial sums of A101207. - Sean A. Irvine, Jun 25 2022

Examples

			n = 20: lcm(1..20) = 2*2*2*2*3*3*5*7*11*13*17*19 = 232792560 and d(232792560) = 5*3*64 = 960.
		

Crossrefs

Programs

  • Maple
    A056793 := proc(n)
        numtheory[tau](lcm($1..n)) ;
    end proc; # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    Table[DivisorSigma[0, LCM @@ Range[n]], {n, 50}]
    Table[Product[Floor[Log[Prime[i], n]] + 1, {i, PrimePi[n]}], {n, 100}] (* Wei Zhou, Jun 25 2011 *)
  • PARI
    a(n)=n+=.5;prod(e=1,log(n)\log(2),(1+1/e)^primepi(n^(1/e))) \\ Charles R Greathouse IV, Jun 06 2013
    
  • Python
    from math import lcm
    from sympy import divisor_count
    from itertools import accumulate, count, islice
    def agen(): yield from map(divisor_count, accumulate(count(1), lcm))
    print(list(islice(agen(), 46))) # Michael S. Branicky, Jun 25 2022

Formula

a(n) = d(lcm(1..n)) = A000005(A003418(n)).
a(n) = Product_{prime p <= n} (floor(log(n)/log(p)) + 1). - Wei Zhou, Jun 25 2011
a(n) = Product_{k>=1} (1+1/k)^pi(n^(1/k)), where pi(n) = A000720(n) (Singh, 2022). - Amiram Eldar, Aug 19 2023
Showing 1-2 of 2 results.