cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101368 The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j+j^2 and j divides 1+i+i^2. In fact, the pairs (a(n),a(n+1)), n>0, are all the solutions.

Original entry on oeis.org

1, 1, 3, 13, 61, 291, 1393, 6673, 31971, 153181, 733933, 3516483, 16848481, 80725921, 386781123, 1853179693, 8879117341, 42542407011, 203832917713, 976622181553, 4679277990051, 22419767768701, 107419560853453, 514678036498563, 2465970621639361, 11815175071698241, 56609904736851843, 271234348612560973
Offset: 1

Views

Author

M. Benito, O. Ciaurri and E. Fernandez (oscar.ciaurri(AT)dmc.unirioja.es), Jan 13 2005

Keywords

Comments

Also, integers m such that 21*(3*m-1)^2 - 48 is a square. - Max Alekseyev, May 23 2022
a(n) is prime exactly for n = 3, 4, 5, 8, 16, 20, 22, 23, 58, 302, 386, 449, 479, 880 up to 1000. - Tomohiro Yamada, Dec 23 2018
Similarly, positive integers m,k with m|(1+k+^2) and k|(1-m+m^2) are consecutive terms of A061646, where m has an even index. - Max Alekseyev, May 23 2022

Examples

			a(5) = 61 because (1 + a(4) + a(4)^2)/a(3) = (1 + 13 + 169)/3 = 61.
		

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]-1; od; Print(a); # Muniru A Asiru, Dec 28 2018
  • Magma
    [n le 2 select 1 else 5*Self(n-1)-Self(n-2)-1: n in [1..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    seq(coeff(series(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)),x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 28 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (1 - 5 x + 3 x^2)/((1 - x) (1 - 5 x + x^2)), {x, 0, 28}], x] (* or *)
    RecurrenceTable[{a[n] == (1 + a[n - 1] + a[n - 1]^2)/a[n - 2], a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *)
    RecurrenceTable[{a[n] == 5 a[n - 1] - a[n - 2] - 1, a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *)
    LinearRecurrence[{6, -6, 1}, {1, 1, 3}, 28] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    Vec(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)) + O(x^30)) \\ Michel Marcus, Aug 03 2016
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,-6,6]^n*[3;1;1])[1,1] \\ Charles R Greathouse IV, Aug 28 2016
    

Formula

Recurrence: a(1)=a(2)=1 and a(n+1)=(1+a(n)+a(n)^2)/a(n-1) for n>2.
G.f.: x(1 - 5x + 3x^2) / [(1-x)(1 - 5x + x^2)]; a(n) = 2 * A089817(n-3) + 1, n>2. - Conjectured by Ralf Stephan, Jan 14 2005, proved by Max Alekseyev, Aug 03 2006
a(n) = 6a(n-1)-6a(n-2)+a(n-3), a(n) = 5a(n-1)-a(n-2)-1. - Floor van Lamoen, Aug 01 2006
a(n) = (4/3 - (2/7)*sqrt(21))*((5 + sqrt(21))/2)^n + (4/3 + (2/7)*sqrt(21))*((5 - sqrt(21))/2)^n + 1/3. - Floor van Lamoen, Aug 04 2006
For n>1, a(n) = (2 * A004253(n-1) + 1) / 3. - Max Alekseyev, May 23 2022