A101368 The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j+j^2 and j divides 1+i+i^2. In fact, the pairs (a(n),a(n+1)), n>0, are all the solutions.
1, 1, 3, 13, 61, 291, 1393, 6673, 31971, 153181, 733933, 3516483, 16848481, 80725921, 386781123, 1853179693, 8879117341, 42542407011, 203832917713, 976622181553, 4679277990051, 22419767768701, 107419560853453, 514678036498563, 2465970621639361, 11815175071698241, 56609904736851843, 271234348612560973
Offset: 1
Examples
a(5) = 61 because (1 + a(4) + a(4)^2)/a(3) = (1 + 13 + 169)/3 = 61.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1471
- Esther Banaian and Archan Sen, A Generalization of Markov Numbers, arXiv:2210.07366 [math.CO], 2022. See Table 1 p. 12.
- T. Cai, Z. Shen and L. Jia, A congruence involving harmonic sums modulo p^alpha q^beta, arXiv preprint arXiv:1503.02798 [math.NT], 2015.
- W. W. Chao, Problem 2981, Crux Mathematicorum, 30 (2004), p. 430.
- Yasuaki Gyoda, Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz, arXiv:2109.09639 [math.NT], 2021. See Remark 3.3 p. 6.
- W. H. Mills, A system of quadratic Diophantine equations. Pacific J. Math. 3:1 (1953), 209-220.
- Index entries for linear recurrences with constant coefficients, signature (6,-6,1).
Programs
-
GAP
a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]-1; od; Print(a); # Muniru A Asiru, Dec 28 2018
-
Magma
[n le 2 select 1 else 5*Self(n-1)-Self(n-2)-1: n in [1..30]]; // Vincenzo Librandi, Dec 25 2018
-
Maple
seq(coeff(series(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)),x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 28 2018
-
Mathematica
Rest@ CoefficientList[Series[x (1 - 5 x + 3 x^2)/((1 - x) (1 - 5 x + x^2)), {x, 0, 28}], x] (* or *) RecurrenceTable[{a[n] == (1 + a[n - 1] + a[n - 1]^2)/a[n - 2], a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *) RecurrenceTable[{a[n] == 5 a[n - 1] - a[n - 2] - 1, a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *) LinearRecurrence[{6, -6, 1}, {1, 1, 3}, 28] (* Michael De Vlieger, Aug 28 2016 *)
-
PARI
Vec(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)) + O(x^30)) \\ Michel Marcus, Aug 03 2016
-
PARI
a(n)=([0,1,0;0,0,1;1,-6,6]^n*[3;1;1])[1,1] \\ Charles R Greathouse IV, Aug 28 2016
Formula
Recurrence: a(1)=a(2)=1 and a(n+1)=(1+a(n)+a(n)^2)/a(n-1) for n>2.
G.f.: x(1 - 5x + 3x^2) / [(1-x)(1 - 5x + x^2)]; a(n) = 2 * A089817(n-3) + 1, n>2. - Conjectured by Ralf Stephan, Jan 14 2005, proved by Max Alekseyev, Aug 03 2006
a(n) = 6a(n-1)-6a(n-2)+a(n-3), a(n) = 5a(n-1)-a(n-2)-1. - Floor van Lamoen, Aug 01 2006
a(n) = (4/3 - (2/7)*sqrt(21))*((5 + sqrt(21))/2)^n + (4/3 + (2/7)*sqrt(21))*((5 - sqrt(21))/2)^n + 1/3. - Floor van Lamoen, Aug 04 2006
For n>1, a(n) = (2 * A004253(n-1) + 1) / 3. - Max Alekseyev, May 23 2022
Comments