A101081 Number of distinct prime factors of (prime p concatenated p times).
2, 2, 3, 3, 6, 6, 6, 3, 6, 8, 5, 7, 7, 8, 6, 6, 6, 10, 5, 5, 7, 10, 10, 9, 7, 7, 8, 11, 9, 8, 9, 14, 8, 9, 9, 11, 8, 10, 9, 10
Offset: 1
Examples
The number of distinct prime factors of 22 is 2. The number of distinct prime factors of 333 is 2. The number of distinct prime factors of 55555 is 3. Then the number of distinct prime factors of 7777777 is 3. a(16) comes from 53 * 107 * 1659431 * 1325815267337711173 * 47198858799491425660200071 * 9090909090909090909090909090909090909090909090909091. a(17) comes from 59 * 1889 * 2559647034361 * 1090805842068098677837 * 4411922770996074109644535362851087 * 4340876285657460212144534289928559826755746751. a(18) comes from 61 * 733 * 4637 * 81131 * 329401 * 974293 * 1360682471 * 106007173861643 * 7061709990156159479 * 11205222530116836855321528257890437575145023592596037161. Concerning a(19) = 67*(100^67-1)/99 = 67 * 493121 * 79863595778924342083 * 25648528130160606364784685146362888405160909090909090909090909090911655761903925151545569377605545379749607 (C107). - _Robert G. Wilson v_, Jan 27 2005
Links
- Dario Alejandro Alpern, Factorization using the Elliptic Curve Method.
Crossrefs
Cf. A101459.
Programs
-
Mathematica
f[n_] := Length[ FactorInteger[ FromDigits[ Flatten[ Table[ IntegerDigits[ Prime[n]], {Prime[n]}] ]]]]; Table[ f[n], {n, 15}] (* Robert G. Wilson v, Jan 27 2005 *) Table[PrimeNu[FromDigits[Flatten[IntegerDigits/@PadRight[{},p,p]]]],{p,Prime[Range[33]]}] (* Harvey P. Dale, Apr 06 2023 *)
Extensions
a(11)-a(15) from Ray Chandler, Jan 25 2005
a(16)-a(18) from Robert G. Wilson v, Jan 27 2005
Corrected and extended to a(33) by D. S. McNeil, Jan 07 2011
a(34)-a(40) from Sean A. Irvine, Nov 06 2024
Comments