cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101081 Number of distinct prime factors of (prime p concatenated p times).

Original entry on oeis.org

2, 2, 3, 3, 6, 6, 6, 3, 6, 8, 5, 7, 7, 8, 6, 6, 6, 10, 5, 5, 7, 10, 10, 9, 7, 7, 8, 11, 9, 8, 9, 14, 8, 9, 9, 11, 8, 10, 9, 10
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 21 2005

Keywords

Examples

			The number of distinct prime factors of 22 is 2.
The number of distinct prime factors of 333 is 2.
The number of distinct prime factors of 55555 is 3.
Then the number of distinct prime factors of 7777777 is 3.
a(16) comes from 53 * 107 * 1659431 * 1325815267337711173 * 47198858799491425660200071 * 9090909090909090909090909090909090909090909090909091. a(17) comes from 59 * 1889 * 2559647034361 * 1090805842068098677837 * 4411922770996074109644535362851087 * 4340876285657460212144534289928559826755746751. a(18) comes from 61 * 733 * 4637 * 81131 * 329401 * 974293 * 1360682471 * 106007173861643 * 7061709990156159479 * 11205222530116836855321528257890437575145023592596037161. Concerning a(19) = 67*(100^67-1)/99 = 67 * 493121 * 79863595778924342083 * 25648528130160606364784685146362888405160909090909090909090909090911655761903925151545569377605545379749607 (C107). - _Robert G. Wilson v_, Jan 27 2005
		

Crossrefs

Cf. A101459.

Programs

  • Mathematica
    f[n_] := Length[ FactorInteger[ FromDigits[ Flatten[ Table[ IntegerDigits[ Prime[n]], {Prime[n]}] ]]]]; Table[ f[n], {n, 15}] (* Robert G. Wilson v, Jan 27 2005 *)
    Table[PrimeNu[FromDigits[Flatten[IntegerDigits/@PadRight[{},p,p]]]],{p,Prime[Range[33]]}] (* Harvey P. Dale, Apr 06 2023 *)

Extensions

a(11)-a(15) from Ray Chandler, Jan 25 2005
a(16)-a(18) from Robert G. Wilson v, Jan 27 2005
Corrected and extended to a(33) by D. S. McNeil, Jan 07 2011
a(34)-a(40) from Sean A. Irvine, Nov 06 2024

A126959 a(k) = k! * lim_{n->oo} card({ i*j; i=1..k, j=1..n })/n.

Original entry on oeis.org

1, 3, 12, 58, 352, 2376, 19296, 168912, 1670976, 18000000, 219916800, 2781561600, 39605760000, 584889984000, 9253091635200, 154909552896000, 2834240274432000, 52918877491200000, 1074184895250432000
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2007, Mar 22 2007

Keywords

Comments

a(k) = k! card { i*j, i<=k, j<=k# } / k# where k# = lcm(1,2,3...,k) a(k)/(k+1)! <= 1/2 for all k.

Examples

			a(2)=3/2 since #{ i*j, i=1..2, j=1..2 } / 2 = #{ 1,2, 2,4 } / 2 = #{1,2,4} / 2.
a(3)=2 since #{ i*j, i=1..3, j=1..6 } / 6 = #{ 1,2,3,4,5,6, 2,4,6,8,10,12, 3,6,9,12,15,18 } / 6 = #{ 1,2,3,4,5,6,8,9,10,12,15,18 } / 6.
		

References

  • A. A. Buchstab, "Asymptotic estimates of a general number-theoretic function", Mat. Sbornik 44 (1937), 1239-1246.

Crossrefs

Programs

  • Maple
    p:=proc(n) option remember;local s,t,i,j: s:=1; t:={}:
    for i from n-1 by -1 to 1+n/(min@op@eval@numtheory[factorset])(n) do
    t := t union { ilcm(n,i)/n };
    t := select( x-> numtheory[divisors](x) intersect t = { x }, t ):
    for j in combinat[powerset](t) do s := s+(-1)^nops(j)/ilcm(op(j)) od:
    od; s/n end:
    A126959 := k -> k!*add( p(n), n=1..k);
  • PARI
    p(n)={ local( cnt=lcm(vector(n-1,j,j)), L=vector(cnt,j,n*j), s=cnt ); forstep( i=n-1, n/factor(n)[1,1]+1, -1, forstep( j=lcm(n,i)/n, #L, lcm(n,i)/n, if( L[j] && (L[j] % i == 0), L[j]=0; cnt--)); s+=cnt ); s/#L/n } a=vector(16); a[1]=1; for( k=2, #a, a[k]=k*a[k-1]+k!*p(k));
Showing 1-2 of 2 results.