cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101500 A Chebyshev transform of the central binomial numbers.

Original entry on oeis.org

1, 2, 5, 16, 53, 178, 609, 2112, 7393, 26066, 92437, 329360, 1178149, 4228322, 15218305, 54907136, 198527617, 719170850, 2609577701, 9483269008, 34508808789, 125727351186, 458573578977, 1674270763584, 6118472289889, 22378379004146, 81913223571701
Offset: 0

Views

Author

Paul Barry, Dec 04 2004

Keywords

Comments

A Chebyshev transform of A000984. Under the Chebyshev transform, we map a g.f. g(x) to (1/(1+x^2))*g(x/(1+x^2)).
Also equal to the Riordan array (1/(1-x)^2,x/(1-x)^2) applied to aerated central binomial coefficients (with g.f. 1/sqrt(1-4x^2)). - Paul Barry, Jul 06 2009
Directed 2-D walks with n steps starting at (0,0) and ending on the X-axis using steps N,S,E,W and avoiding N followed by S. - David Scambler, Jun 24 2013

Crossrefs

Cf. A000984.

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1+x^2)*(1-4*x+x^2)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
    Table[1/2^n* Sum[(-1)^k*Binomial[2 k, k]* Sum[Binomial[n - 2 k, j]^2*3^j, {j, 0, n - 2 k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 30 2018 *)
    Table[Sum[Binomial[n - k, k]*(-1)^k*Binomial[2 (n - 2 k), n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 30 2018 *)
    a[ n_] := Sum[Binomial[n + k + 1, 2k + 1] Binomial[k, Quotient[k, 2]], {k, 0, n, 2}]; (* Michael Somos, Jun 30 2018 *)
  • PARI
    A101500(maxx)={n=0;while(n<=maxx,z=sum(k=0,floor(n/2), binomial(n-k,k)*binomial(2*(n-2*k),n-2*k)*(-1)^k ) ;print1(z,", ");n+=1);} \\ Bill McEachen, Jan 02 2016
    
  • PARI
    x='x+O('x^40); Vec(1/(sqrt(1+x^2)*sqrt(1-4*x+x^2))); \\ Michel Marcus, Jan 03 2016

Formula

G.f.: 1/(sqrt(1+x^2)*sqrt(1-4*x+x^2)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*C(2(n-2k), n-2k).
From Paul Barry, Jul 06 2009: (Start)
G.f.: 1/((1-x)^2-2*x^2/((1-x)^2-x^2/((1-x)^2-x^2/((1-x)^2-... (continued fraction);
a(n) = Sum_{k=0..n} C(n+k+1,n-k)*C(k,k/2)*(1+(-1)^k)/2. (End)
Conjecture: n*a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(-2*n+3)*a(n-3) +(n-2)*a(n-4)=0. - R. J. Mathar, Nov 16 2012
a(n) ~ sqrt(1/2 + 7/(8*sqrt(3))) * (2+sqrt(3))^n / sqrt(Pi*n). - Vaclav Kotesovec, Feb 08 2014
a(n) = Sum_{k=ceiling(n/2)..n} C(k,n-k)^2*2^(2*k-n). - Vladimir Kruchinin, Apr 09 2014