A101622 A Horadam-Jacobsthal sequence.
0, 1, 6, 13, 30, 61, 126, 253, 510, 1021, 2046, 4093, 8190, 16381, 32766, 65533, 131070, 262141, 524286, 1048573, 2097150, 4194301, 8388606, 16777213, 33554430, 67108861, 134217726, 268435453, 536870910, 1073741821, 2147483646, 4294967293, 8589934590
Offset: 0
References
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Jacobsthal Representation Numbers, Fib Quart., Vol. 34, No. 1 (1996), pp. 40-54.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences. [_Wolfdieter Lang_, Oct 18 2010]
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Stephen Wolfram, A New Kind of Science.
- Wolfram Research, Wolfram Atlas of Simple Programs.
- Index entries for sequences related to cellular automata.
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Crossrefs
Cf. A131953.
Programs
-
Magma
[(2^(n+2)+(-1)^n-5)/2: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011
-
Mathematica
LinearRecurrence[{2,1,-2},{0,1,6},40] (* Harvey P. Dale, Jul 08 2014 *)
-
PARI
concat(0, Vec(x*(1+4*x)/((1-x)*(1+x)*(1-2*x)) + O(x^30))) \\ Colin Barker, Mar 28 2017
Formula
a(n) = (2^(n+2) + (-1)^n - 5)/2.
G.f.: x*(1+4*x)/((1-x)*(1+x)*(1-2*x)).
a(n) = (A014551(n+2)-5)/2.
(1, 6, 13, 30, 61, ...) are the row sums of A131953. - Gary W. Adamson, Jul 31 2007
From Paul Curtz, Jan 01 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(2n+1) - a(2n) = 1, 7, 31, ... = A083420.
a(2n+1) - 2*a(2n) = 1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. - Colin Barker, Mar 28 2017
a(n) = (1/2) * Sum_{k=1..n} binomial(n+1,k) * (2+(-1)^k). - Wesley Ivan Hurt, Sep 23 2017
Comments