A101695 a(n) = n-th n-almost prime.
2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5632, 11520, 25600, 53248, 124416, 258048, 540672, 1105920, 2228224, 4587520, 9830400, 19922944, 40894464, 95551488, 192937984, 396361728, 822083584, 1660944384, 3397386240, 6845104128
Offset: 1
Keywords
Examples
a(1) = first 1-almost prime = first prime = A000040(1) = 2. a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6. a(3) = 3rd 3-almost prime = A014612(3) = 18. a(4) = 4th 4-almost prime = A014613(4) = 40. a(5) = 5th 5-almost prime = A014614(5) = 108.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 (first 229 terms from Robert G. Wilson v)
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Programs
-
Maple
A101695 := proc(n) local s,a ; s := 0 ; for a from 2^n do if numtheory[bigomega](a) = n then s := s+1 ; if s = n then return a; end if; end if; end do: end proc: # R. J. Mathar, Aug 09 2012
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
-
Python
from math import prod, isqrt from sympy import primerange, primepi, integer_nthroot def A101695(n): if n == 1: return 2 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Conjecture: lim_{ n->inf.} a(n+1)/a(n) = 2. - Robert G. Wilson v, Oct 07 2007, Nov 13 2007
Stronger conjecture: a(n)/(n * 2^n) is polylogarithmic in n. That is, there exist real numbers b < c such that (log n)^b < a(n)/(n * 2^n) < (log n)^c for large enough n. Probably b and c can be chosen close to 0. - Charles R Greathouse IV, Aug 28 2012
Extensions
a(21)-a(30) from Robert G. Wilson v, Feb 11 2006
a(12) corrected by N. J. A. Sloane, Nov 23 2007
Comments