cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A101696 a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.

Original entry on oeis.org

2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2004, Sep 28 2006

Keywords

Comments

It seems that this sum can never be a prime after a(1) = 2, since the n-th n-almost prime is always even. The number of prime factors (with multiplicity) of a(n) is 1, 3, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 3, 3, 5, 4, 3, 4, 7, 4, 2, 5, 5, 2, 3, 7, 4, 3, 4.
This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. a(1)=2 is prime. a(2)=8 is a 3-almost prime. a(3)=26 is a semiprime. a(4)=66 is a 3-almost prime. a(5)= 174 is a 3-almost prime. a(6)=398 is a semiprime. a(7)=878 is a semiprime. a(8)=2174 is a semiprime. a(9)=4862 is a 4-almost prime. a(10)=10494 is a 5-almost prime. a(11)=22014 is a 4-almost prime. a(12)=45054 is a 3-almost prime. a(13)=98302 is a 3-almost prime. a(14)=222718 is a 3-almost prime. a(15)=480766 is a 5-almost prime. a(16)=1021438 is a 4-almost prime. a(17)=2127358 is a 3-almost prime. a(18)=4355582 is a 4-almost prime. a(19)=8943102 is a 7-almost prime. a(20)=18773502 is a 4-almost prime. 21-almost numbers are not yet listed in the OEIS.

Examples

			a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8.
a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26.
a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66.
a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174.
...
a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
		

Crossrefs

Formula

a(1) = first 1-almost prime = first prime = A000040(1). a(2) = a(1) + 2nd 2-almost prime = a(1) + 2nd semiprime = A000040(1)+A001358(2). a(3) = a(2) + 3rd 3-almost prime = a(2) + A014612(3). a(4) = a(3) + 4th 4-almost prime = a(3) + A014613(4)... a(n) = a(n-1) + n-th n-almost prime.

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A122942 Partial product of n-th n-almost prime (A101695) divided by product of the first n primes, rounded down.

Original entry on oeis.org

1, 2, 7, 41, 403, 6960, 196527, 13405218, 1566662070, 304256578608, 113065670502087, 78229220671714544, 101598769325059903837, 293965406612712860369329, 1613982664799943153033715558
Offset: 1

Views

Author

Jonathan Vos Post, Oct 24 2006

Keywords

Examples

			a(1) = floor(2/2) = floor(1) = 1.
a(2) = floor(12/6) = floor(2) = 2.
a(3) = floor(216/30) = floor(7.2) = 7.
a(4) = floor(8640/210) = floor(41.1428571) = 41.
a(5) = floor(933120/2310) = floor(403.948052) = 403.
a(6) = floor(209018880/30030) = floor(6960.33566) = 6960.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2;
    t = Table[ AlmostPrime[n, n], {n, 20}]; Floor[Rest@ FoldList[Times, 1, t]/Rest@ FoldList[Times, 1, Prime@ Range@ 20]] (* Robert G. Wilson v, Aug 31 2007 *)

Formula

a(n) = floor( Product_{i=1..n} A101695(i) / A000040(i) ).

Extensions

More terms from Robert G. Wilson v, Aug 31 2007

A123118 Partial products of A101695.

Original entry on oeis.org

2, 12, 216, 8640, 933120, 209018880, 100329062400, 130026464870400, 349511137571635200, 1968446726803449446400, 22676506292775737622528000, 522466704985552994823045120000, 27820307107070725868337506549760000
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

The number of prime factors (with multiplicity) of a(n) is T(n) = A000217(n) = n*(n+1)/2.

Examples

			a(1) = 2 = prime(1).
a(2) = 12 = 2 * 6 = prime(1) * semiprime(2) = 2^2 * 3.
a(3) = 216 = 2 * 6 * 18 = prime(1) * semiprime(2) * 3-almostprime(3) = 2^3 * 3^3.
a(4) = 8640 = 2 * 6 * 18 * 40 = prime(1) * semiprime(2) * 3-almostprime(3) * 4-almostprime(4) = 2^6 * 3^3 * 5.
a(15) = 893179304874387947794472921245209518407680000 = 2 * 6 * 18 * 40 * 108 * 224 * 480 * 1296 * 2688 * 5632 * 11520 * 23040 * 53248 * 124416 * 258048 = 2^88 * 3^23 * 5^4 * 7^3 * 11 * 13.
		

Crossrefs

Formula

a(n) = Prod[i=1..n] i-th i-almost prime = Prod[i=1..n] A101695(i).

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A078841 Main diagonal of the table of k-almost primes (A078840): a(n) = (n+1)-st integer that is an n-almost prime.

Original entry on oeis.org

1, 3, 9, 20, 54, 112, 240, 648, 1344, 2816, 5760, 12800, 26624, 62208, 129024, 270336, 552960, 1114112, 2293760, 4915200, 9961472, 20447232, 47775744, 96468992, 198180864, 411041792, 830472192, 1698693120, 3422552064, 7046430720
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

A k-almost prime is a positive integer that has exactly k prime factors counted with multiplicity.

Examples

			a(0) = 1 since one is the multiplicative identity,
a(1) = 2nd 1-almost prime is the second prime number = A000040(2) = 3,
a(2) = 3rd 2-almost prime = 3rd semiprime = A001358(3) = 9 = {3*3}.
a(3) = 4th 3-almost prime = A014612(4) = 20 = {2*2*5}.
a(4) = 5th 4-almost prime = A014613(5) = 54 = {2*3*3*3},
a(5) = 6th 5-almost prime = A014614(6) = 112 = {2*2*2*2*7}, ....
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[ t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Table[ t[[n, n + 1]], {n, 30}] (* Robert G. Wilson v, Feb 11 2006 *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a,i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n-1, n]], {n, 30}]; lst (* Robert G. Wilson v, Nov 13 2007 *)
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A078841(n):
        if n <= 1: return (n<<1)+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Conjecture: Lim as n->inf. of a(n+1)/a(n) = 2. - Robert G. Wilson v, Nov 13 2007

Extensions

a(14)-a(29) from Robert G. Wilson v, Feb 11 2006

A122943 Odd numbers n ordered by n/2^BigOmega(n), where BigOmega(n) is the number of prime divisors of n with repetition.

Original entry on oeis.org

1, 3, 9, 5, 27, 7, 15, 81, 21, 11, 45, 25, 13, 243, 63, 33, 135, 17, 35, 75, 19, 39, 729, 23, 189, 49, 99, 405, 51, 105, 55, 225, 57, 29, 117, 31, 125, 65, 2187, 69, 567, 147, 37, 297, 1215, 153, 77, 315, 41, 165, 675, 85, 171, 43, 87, 175, 351, 91, 93, 375, 47, 95, 195
Offset: 1

Views

Author

Keywords

Comments

This is the limit of the sequence of largest odd factors of the k-almost primes as k -> infinity.
The location of 3^k in this sequence is A078843(k).
Removing 1 and prime numbers from this sequence gives A374074. - Friedjof Tellkamp, Nov 27 2024

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* from Eric Weisstein, Feb 07 2006 *); AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; f[n_] := Block[{ kap = AlmostPrime[20, n]}, kap / 2^IntegerExponent[ kap, 2]]; Array[f, 64] (* or *)
    f[n_] := n/2^PrimeOmega[n]; Take[2 Ordering[ Table[ f[ 2n - 1], {n, 1100}]] - 1, 63] (* Robert G. Wilson v, Feb 08 2011 *)
    f[n_] := n/2^PrimeOmega[n]; nn=9; t = Select[Table[{f[2 n - 1], 2 n - 1}, {n, 3^nn/2 + 1}], #[[1]] <= f[3^nn] &]; Transpose[Sort[t]][[2]]

Formula

A101695(n) = a(n) * 2^(n - BigOmega(a(n))). a(n) = A101695(n) / 2^A007814(A101695(n)) = A000265(A101695(n)).

A215405 Largest prime factor of the n-th n-almost prime.

Original entry on oeis.org

2, 3, 3, 5, 3, 7, 5, 3, 7, 11, 5, 5, 13, 3, 7, 11, 5, 17, 7, 5, 19, 13, 3, 23, 7, 7, 11, 5, 17, 7, 11, 5, 19, 29, 13, 31, 5, 13, 3, 23, 7, 7, 37, 11, 5, 17, 11, 7, 41, 11, 5, 17, 19, 43, 29, 7, 13, 13, 31, 5, 47, 19, 13, 3, 23, 53, 7, 7, 37
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 09 2012

Keywords

Comments

Technically, the prime numbers are "1-almost prime."
Prime(m) (m>=1) occurs first at index n = 1, 2, 4, 6, 10, 13, 18, 21, 24, 34, 36, 43, 49, 54, 61, 66, 75, 79, 91, 97, 101, 107, 113, 124, 138, 144, 148, 157, 162, 167, 187, 194, 202, 207, 224, 229,... in the sequence. - R. J. Mathar, Aug 09 2012
n <= a(n) at 1, 2, 3, 4, 6, 10, 13,...
n < 2*a(n) at n = 1, 2, 3, 4, 6, 7, 9, 10, 13, 16, 18, 21, 22, 24, 29, 33, 34, 36, 40, 43, 49, 54, 55, 59, 61, 66, 69,...
Also largest prime factor of A122943(n) for n>1. - Eric Desbiaux, Mar 20 2016

Examples

			a(2) = 3 because the 2nd 2-almost prime (semiprime, A001358) is 6 = 2 * 3, the largest prime factor there being 3.
a(3) = 3 because the 3rd 3-almost prime (A014612) is 18 = 2 * 3^2, the largest prime factor there being 3.
a(4) = 5 because the 4th 4-almost prime (A014613) is 40 = 2^3 * 5, the largest prime factor there being 5.
		

Crossrefs

Programs

Extensions

Corrected by R. J. Mathar, Aug 09 2012

A330394 Irregular triangle T(n,k) read by rows in which n-th row lists in increasing order all integers m such that Omega(m) = n and each prime factor p of m has index pi(p) <= n.

Original entry on oeis.org

1, 2, 4, 6, 9, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 32, 48, 72, 80, 108, 112, 120, 162
Offset: 0

Views

Author

Robert Price, Mar 03 2020

Keywords

Comments

Positive integers not in T are: 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, ... .
Row n has exactly one squarefree member: primorial(n) = A002110(n).
Sorting all terms (except 1) gives A324521.

Examples

			Triangle T(n,k) begins:
  1;
  2;
  4,  6,  9;
  8, 12, 18, 20, 27, 30, 45, 50, 75, 125;
  ...
		

Crossrefs

Column k=1 gives A000079.
Last elements of rows give A307539.
Row lengths give A088218.
Row sums give A332967(n) = A124960(2n,n).
T(n,n) gives A101695(n) for n > 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], [seq(
          map(x-> x*ithprime(j), b(n-1, j))[], j=1..i)])
        end:
    T:= n-> sort(b(n$2))[]:
    seq(T(n), n=0..5);  # Alois P. Heinz, Mar 03 2020
  • Mathematica
    t = Table[Union[Apply[Times, Tuples[Prime[Range[n]], {n}], {1}]], {n, 0, 5}];
    t // TableForm
    Flatten[t]

A340467 a(n) is the n-th squarefree number having n prime factors.

Original entry on oeis.org

2, 10, 66, 462, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1

Views

Author

Alois P. Heinz, Jan 08 2021

Keywords

Comments

a(n) is the n-th product of n distinct primes.
All terms are even.
This sequence differs from A073329 which has also nonsquarefree terms.

Examples

			a(1) = A000040(1) = 2.
a(2) = A006881(2) = 10.
a(3) = A007304(3) = 66.
a(4) = A046386(4) = 462.
a(5) = A046387(5) = 4290.
a(6) = A067885(6) = 53130.
a(7) = A123321(7) = 903210.
a(8) = A123322(8) = 17687670.
a(9) = A115343(9) = 406816410.
a(10) = A281222(10) = 11125544430.
		

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A340467(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A340316(n,n).
a(n) = A005117(m) <=> A072047(m) = n = A340313(m).
A001221(a(n)) = A001222(a(n)) = n.
a(n) < A070826(n+1), the least odd number with exactly n distinct prime divisors.

A376739 Main diagonal of A376738: a(n) is the n-th number which is the product of n (possibly non-distinct) primes having the same number of decimal digits.

Original entry on oeis.org

2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5760, 12800, 31104, 64512, 138240, 286720, 614400, 1492992, 3096576, 6422528
Offset: 1

Views

Author

Paolo Xausa, Oct 03 2024

Keywords

Comments

See A376738 for more information.
First differs from A101695 at n = 10.

Crossrefs

Programs

  • Mathematica
    A376739[n_] := Module[{m = 2^n - 1}, Do[While[Total[(f = FactorInteger[++m])[[All, 2]]] != n || Length[Union[IntegerLength[f[[All, 1]]]]] > 1], n]; m];
    Array[A376739, 15]

Formula

a(n) = A376738(n,n).
Showing 1-10 of 14 results. Next