cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101879 a(0) = 1, a(1) = 1, a(2) = 2; for n > 2, a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 286, 1066, 3977, 14841, 55386, 206702, 771421, 2878981, 10744502, 40099026, 149651601, 558507377, 2084377906, 7779004246, 29031639077, 108347552061, 404358569166, 1509086724602, 5631988329241, 21018866592361, 78443478040202, 292755045568446
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 28 2005

Keywords

Comments

Consider the matrix M=[1,1,0; 1,3,1; 0,1,1]; characteristic polynomial of M is x^3 - 5*x^2 + 5*x - 1. Use (M^n)[1,1] to define the recursion a(0) = 1, a(1) = 1, a(2) = 2, for n>2 a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3).
a(n+1)/a(n) converges to 2 + sqrt(3) as n goes to infinity, the largest root of the characteristic polynomial. a(n) = A061278(n) + 1; (M^n)[1,2] = A001353(n); (M^n)[1,3] = A061278(n-1) for n>0; all with the same recursive properties.
Consecutive terms of this sequence and consecutive terms of A032908 provide all positive integer pairs for which K=(a+1)/b+(b+1)/a is an integer. For this sequence K=4. - Andrey Vyshnevyy, Sep 18 2015
The two-page Reid Barton article was sent to me around 2002, but for some reason it was not included in the OEIS at that time. I recently rediscovered it in my files. - N. J. A. Sloane, Sep 08 2018

Crossrefs

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-5*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{5, -5, 1}, {1, 1, 2}, 30] (* Vincenzo Librandi, Sep 18 2015 *)
    CoefficientList[Series[(1 - 4 x + 2 x^2)/((1 - x) (1 - 4 x + x^2)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 11 2016 *)
    a[ n_] := If[ n < 1, a[1 - n], SeriesCoefficient[ (1/(1 - x) + (1 - 3 x)/(1 - 4 x + x^2)) / 2, {x, 0, n}]]; (* Michael Somos, Jul 09 2017 *)
  • PARI
    M=[1,1,0; 1,3,1; 0,1,1]; for(i=0,40,print1((M^i)[1,1],","))
    
  • PARI
    {a(n) = if( n<1, a(1-n), polcoeff( (1/(1 - x) + (1 - 3*x)/(1 - 4*x + x^2)) / 2 + x * O(x^n), n))}; /* Michael Somos, Jul 09 2017 */

Formula

a(n) = A101265(n), n>0. - R. J. Mathar, Aug 30 2008
a(n) = A079935(n+1) - A001571(n). - Gerry Martens, Jun 05 2015
a(0) = a(1) = 1, for n>1 a(n) = (a(n-1) + a(n-1)^2) / a(n-2). - Seiichi Manyama, Aug 11 2016
From Ilya Gutkovskiy, Aug 11 2016: (Start)
G.f.: (1 - 4*x + 2*x^2)/((1 - x)*(1 - 4*x + x^2)).
a(n) = (6+(3-sqrt(3))*(2+sqrt(3))^n + (2-sqrt(3))^n*(3+sqrt(3)))/12. (End)
a(n) = 4*a(n-1) - a(n-2) - 1. - Seiichi Manyama, Aug 26 2016
From Seiichi Manyama, Sep 03 2016: (Start)
a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).
a(n) = A005246(n)*A005246(n+1). (End)
From Michael Somos, Jul 09 2017: (Start)
0 = +a(n)*(+1 +a(n) -4*a(n+1)) +a(n+1)*(+1 +a(n+1)) for all n in Z.
a(n) = a(1 - n) = (1 + A001835(n)) / 2 for all n in Z. (End)

Extensions

a(26)-a(27) from Vincenzo Librandi, Sep 18 2015