cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002190 Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).

Original entry on oeis.org

0, 1, 1, 4, 33, 456, 9460, 274800, 10643745, 530052880, 32995478376, 2510382661920, 229195817258100, 24730000147369440, 3113066087894608560, 452168671458789789504, 75059305956331837485345, 14121026957032156557396000, 2988687741694684876495689040
Offset: 0

Views

Author

Keywords

Comments

Number of non-ambiguous trees, see the Aval et al. reference. - Joerg Arndt, May 11 2015

Examples

			-log( Sum_{n>=0} (-x)^n/n!^2 ) = x + x^2/2!^2 + 4*x^3/3!^2 + 33*x^4/4!^2 + 456*x^5/5!^2 + 9460*x^6/6!^2 + ... . -_Paul D. Hanna_, Oct 09 2010
		

References

  • Stany De Smedt, On Sloane's Sequence 1484, Saitama Math. J. 15 (1997), 9-13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A101981. A diagonal of A217940.
Cf. A115368.

Programs

  • Maple
    a:= n-> coeff(series(-ln(BesselJ(0,2*sqrt(x))), x, n+1), x, n)*(n!)^2:
    seq(a(n), n=0..30); # Alois P. Heinz, Oct 10 2010
  • Mathematica
    nn=18; CoefficientList[Series[-Log[BesselJ[0, 2*Sqrt[x]]], {x, 0, nn}], x]*Table[n!^2, {n, 0, nn}] (* Jean-François Alcover, Jun 22 2011 *)
    Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[Binomial[n-1, j]*Binomial[n-1, j+1]*Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], { n-2}]; a[n_] := q[n, n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    N=66; x='x+O('x^N);
    f=-log(sum(n=0,N, (-x)^n/(n!)^2) );
    f=serlaplace(f);
    f=serlaplace(f);
    concat([0],Vec(f))
    \\ Joerg Arndt, May 17 2013
    
  • PARI
    \\ Terms starting from a(1)=1:
    N=33; B=vector(N);  B[1]=1;  b(j)=B[j+1];
    for(n=0,N-2, B[n+2]=sum(i=0,n, my(j=n-i); binomial(n+1,i)*binomial(n+1,j)*b(i)*b(j) ) ); B
    \\ Joerg Arndt, May 11 2015

Formula

Conjecture: G.f.: 1 = Sum_{n>=0} a(n+1)*A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)^2*(-x)^k. Compare with the following g.f of the Catalan numbers (A000108): 1 = Sum_{n>=0} A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)*(-x)^k. - Paul D. Hanna, Oct 10 2010
a(n) ~ n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613... - Vaclav Kotesovec, Mar 02 2014
a(0) = 0; a(n) = -(-1)^n + (1/n) * Sum_{k=1..n-1} (-1)^(n-k-1) * binomial(n,k)^2 * k * a(k). - Ilya Gutkovskiy, Jul 15 2021

Extensions

More terms and better definition from Vladeta Jovovic, Jul 16 2006
Edited by Assoc. Editors of the OEIS, Oct 12 2010

A101980 Matrix logarithm of A008459 (squared entries of Pascal's triangle), read by rows.

Original entry on oeis.org

0, 1, 0, -1, 4, 0, 4, -9, 9, 0, -33, 64, -36, 16, 0, 456, -825, 400, -100, 25, 0, -9460, 16416, -7425, 1600, -225, 36, 0, 274800, -463540, 201096, -40425, 4900, -441, 49, 0, -10643745, 17587200, -7416640, 1430016, -161700, 12544, -784, 64, 0, 530052880, -862143345, 356140800, -66749760, 7239456
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2004

Keywords

Comments

Column 0 (A101981) is essentially a signed offset version of A002190 and is related to Bessel functions. Row sums form A101982.

Examples

			Rows begin:
[0],
[1,0],
[ -1,4,0],
[4,-9,9,0],
[ -33,64,-36,16,0],
[456,-825,400,-100,25,0],
[ -9460,16416,-7425,1600,-225,36,0],
[274800,-463540,201096,-40425,4900,-441,49,0],
[ -10643745,17587200,-7416640,1430016,-161700,12544,-784,64,0],...
and equal the term-by-term product of column 0:
A101981 = {0,1,-1,4,-33,456,-9460,274800,-10643745,...}
with the rows of the squared Pascal's triangle (A008459):
[0],
[1*1^2, 0*1^2],
[ -1*1^2, 1*2^2, 0*1^2],
[4*1^2, -1*3^2, 1*3^2, 0*1^2],
[ -33*1^2, 4*4^2, -1*6^2, 1*4^2, 0*1^2],
[456*1^2, -33*5^2, 4*10^2, -1*10^2, 1*5^2, 0*1^2],...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(nj,binomial(i-1,j-1)^2))^m/m)[n+1,k+1]))}

Formula

T(n, k) = A101981(n-k)*C(n, k)^2.

A101982 Row sums of triangle A101980, which is the matrix logarithm of A008459 (squared entries of Pascal's triangle).

Original entry on oeis.org

0, 1, 3, 4, 11, -44, 942, -23561, 806955, -35956868, 2023718198, -140435834681, 11782131588086, -1175694615277233, 137629159046661089, -18679508311308283526, 2909710453923000618155, -515605748075502971981108, 103130355820655917046896638, -23123715029010809457898920545
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2004

Keywords

Comments

A101981 is essentially a signed offset version of A002190 and is related to Bessel functions.

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(m=1,n,(-1)^(m-1)* (matrix(n+1,n+1,i,j,if(i>j,binomial(i-1,j-1)^2))^m/m)[n+1,k+1]))}

Formula

a(n) = Sum_{k=0..n} A101981(n-k)*C(n, k)^2.

A337824 a(0) = 0; a(n) = n^2 - (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k))^2 * k * a(k).

Original entry on oeis.org

0, 1, 2, -15, 16, 2505, -60264, -606515, 131316928, -4813100271, -339213768200, 62401665573621, -2075963863814928, -745086903175541927, 140250562903680456332, 808225064553580739325, -5491409141464496462591744, 1013058261721909845376508449, 127689148764914765889971316600
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2020

Keywords

Crossrefs

Programs

  • Maple
    S:= series(log(1+x*BesselI(0,2*sqrt(x))),x,31):
    0,seq(coeff(S,x,n)*(n!)^2, n=1..30); # Robert Israel, Jan 07 2024
  • Mathematica
    a[0] = 0; a[n_] := a[n] = n^2 - (1/n) * Sum[(Binomial[n, k] (n - k))^2 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Log[1 + x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + x * BesselI(0,2*sqrt(x))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + Sum_{n>=1} n^2 * x^n / (n!)^2).

A337825 a(0) = 0; a(n) = n^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k)^3 * k * a(k).

Original entry on oeis.org

0, 1, 6, -33, -512, 19405, 181116, -45817541, 771776384, 280415588121, -23151651942500, -3217963989270569, 816268626535923936, 38087192839910816485, -43268389662374707851552, 2822720920753640236252875, 3297662826737476255127428096, -833876355494162903256716734927
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = n^3 - (1/n) * Sum[Binomial[n, k]^2 (n - k)^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Log[1 + x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + x * (BesselI(0,2*sqrt(x)) + sqrt(x) * BesselI(1,2*sqrt(x)))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + Sum_{n>=1} n^3 * x^n / (n!)^2).

A217567 E.g.f. satisfies: A(x) = ( Sum_{n>=0} x^n/n!^2 )^A(x) where A(x) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 5, 73, 2061, 97301, 6897203, 686934284, 91511132653, 15722347919797, 3385861914011775, 893404629519870524, 283510131741909375339, 106536362337513833330932, 46788887175103244923057374, 23747979495191419502491847783, 13795147423164719523469062474093
Offset: 0

Views

Author

Paul D. Hanna, Oct 07 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2!^2 + 73*x^3/3!^2 + 2061*x^4/4!^2 + 97301*x^5/5!^2 +...
where
A(x) = (1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 + x^5/5!^2 +...)^A(x).
Related expansions:
log(A(x)) = x + 3*x^2/2!^2 + 31*x^3/3!^2 + 679*x^4/4!^2 + 25581*x^5/5!^2 + 1474706*x^6/6!^2 + 120670201*x^7/7!^2 + 13298986863*x^8/8!^2 +...
log(A(x))/A(x) = log(1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 +...);
log(A(x))/A(x) = x - x^2/2!^2 + 4*x^3/3!^2 - 33*x^4/4!^2 + 456*x^5/5!^2 - 9460*x^6/6!^2 + 274800*x^7/7!^2 +...+ A101981(n)*x^n/n!^2 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m/m!^2+x*O(x^n))^A);n!^2*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2 satisfies the following formulas.
(1) A(x) = ( Sum_{n>=0} x^n/n!^2 )^A(x).
(2) A(x) = log(A(x)) / ( Sum_{n>=0} A101981(n)*x^n/n!^2 ).
Showing 1-6 of 6 results.