cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102036 Triangle, read by rows, where the terms are generated by the rule: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-3,k-1), with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 9, 15, 7, 1, 1, 12, 33, 28, 9, 1, 1, 15, 60, 81, 45, 11, 1, 1, 18, 96, 189, 161, 66, 13, 1, 1, 21, 141, 378, 459, 281, 91, 15, 1, 1, 24, 195, 675, 1107, 946, 449, 120, 17, 1, 1, 27, 258, 1107, 2349, 2673, 1742, 673, 153, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2004

Keywords

Comments

Row sums form A077939. This sequence was inspired by Luke Hanna.
Diagonal sums are A000078(n+3). - Philippe Deléham, Feb 16 2014
Riordan array (1/(1-x), x*(1+x+x^2)/(1-x)). - Philippe Deléham, Feb 16 2014

Examples

			Generated by adding preceding terms in the triangle at positions that form the letter 'L':
T(n,k) =
T(n-3,k-1) +
T(n-2,k-1) +
T(n-1,k-1) + T(n-1,k).
Rows begin:
  [1],
  [1,  1],
  [1,  3,   1],
  [1,  6,   5,   1],
  [1,  9,  15,   7,   1],
  [1, 12,  33,  28,   9,   1],
  [1, 15,  60,  81,  45,  11,  1],
  [1, 18,  96, 189, 161,  66, 13,  1],
  [1, 21, 141, 378, 459, 281, 91, 15, 1], ...
		

Crossrefs

Programs

  • Magma
    [[(&+[Binomial(n-m,k)*(&+[Binomial(j,m-j)*Binomial(k,j):j in [0..k]]): m in [0..n-k]]): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Dec 11 2018
    
  • Maple
    T:=(n,k)->add(add((binomial(j,m-j)*binomial(k,j))*binomial(n-m,k),j=0..k),m=0..n-k): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    T[n_, k_] := If[n < k || k < 0, 0, If[n == 0, 1, T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k - 1] + T[n - 3, k - 1]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
    Table[Sum[Binomial[n-m, k]*Sum[Binomial[j, m-j]*Binomial[k, j], {j, 0, k}], {m, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 11 2018 *)
  • Maxima
    T(n,k):=sum((sum(binomial(j,m-j)*binomial(k,j),j,0,k))*binomial(n-m,k),m,0,n-k); /* Vladimir Kruchinin, Apr 21 2015 */
    
  • PARI
    {T(n,k)=if(n
    				
  • Sage
    [[sum(binomial(n-m,k)*sum(binomial(j,m-j)*binomial(k,j) for j in (0..k)) for m in (0..n-k)) for k in (0..n)] for n in range(15)] # G. C. Greubel, Dec 11 2018

Formula

G.f.: 1/(1-y-x*(1+y+y^2)). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..(n-k)} (Sum_{j=0..k} C(j,m-j)*C(k,j))*C(n-m,k). - Vladimir Kruchinin, Apr 21 2015
From Werner Schulte, Dec 07 2018: (Start)
G.f. of column k: Sum_{n>=0} T(n+k,k) * x^n = (1+x+x^2)^k / (1-x)^(k+1) = (1-x^3)^k / (1-x)^(2*k+1).
Let k >= 0 be some fixed integer and a_k(n) be multiplicative with a_k(p^e) = T(e+k,k) for prime p and e >= 0. Then we have the Dirichlet g.f.: Sum{n>0} a_k(n) / n^s = (zeta(s))^(2*k+1) / (zeta(3*s))^k. (End)