cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102094 a(n) = (2*n-1)*(2*n+1)^2.

Original entry on oeis.org

9, 75, 245, 567, 1089, 1859, 2925, 4335, 6137, 8379, 11109, 14375, 18225, 22707, 27869, 33759, 40425, 47915, 56277, 65559, 75809, 87075, 99405, 112847, 127449, 143259, 160325, 178695, 198417, 219539, 242109, 266175, 291785, 318987, 347829, 378359, 410625
Offset: 1

Views

Author

Gerald McGarvey, Feb 13 2005

Keywords

Comments

Numbers which are both the sum of 2n+1 consecutive odd integers and, after skipping one odd integer, the sum of the 2n-1 immediately higher consecutive odd integers. See A082108(n-1) for the smallest of the 2n+1 odd integers, and A054569(n+1) for the skipped number. Odd integer counterpart to A059270. - Charlie Marion, Apr 30 2020

References

  • G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, p. 123.
  • J. Ewell, An Eulerian Method for Representing Pi^2 by Series, The Rocky Mountain Journal of Mathematics 1992 v.22, pp. 165-168.

Crossrefs

Cf. A002388.

Programs

  • GAP
    List([1..40], n-> (2*n-1)*(2*n+1)^2); # G. C. Greubel, Oct 27 2019
  • Magma
    [(2*n-1)*(2*n+1)^2: n in [1..40]]; // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq((2*n-1)*(2*n+1)^2, n=1..40); # G. C. Greubel, Oct 27 2019
  • Mathematica
    Table[(2n-1)(2n+1)^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{9,75,245,567},40] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    vector(40, n, (2*n-1)*(2*n+1)^2) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    [(2*n-1)*(2*n+1)^2 for n in (1..40)] # G. C. Greubel, Oct 27 2019
    

Formula

Sum_{n>=1} 1/a(n) = (12 - Pi^2)/16.
Sum_{n>=1} n/a(n) = (Pi^2 - 4)/32. - Sign flipped by Bernard Schott, May 06 2020
From Harvey P. Dale, Jul 24 2012: (Start)
a(1)=9, a(2)=75, a(3)=245, a(4)=567, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (9 + 39*x - x^2 + x^3)/(1-x)^4. (End)
E.g.f.: 1 + (-1 + 10*x + 28*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Oct 27 2019

Extensions

More terms from Harvey P. Dale, Jul 24 2012