cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102133 Iccanobirt prime indices (3 of 15): Indices of prime numbers in A102113.

Original entry on oeis.org

4, 6, 7, 25, 30, 50, 100, 657, 3158, 3369, 3441, 17549, 19234
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
No more terms through 6000. - Harvey P. Dale, Sep 10 2016
a(14) > 50000. - Robert Price, Nov 07 2018

Crossrefs

Programs

Formula

A102113(a(n)) = A102153(n).

Extensions

a(12)-a(13) from Robert Price, Nov 07 2018

A102153 Iccanobirt primes (3 of 15): Prime numbers in A102113.

Original entry on oeis.org

2, 7, 13, 27283111, 2758358381, 20271711015483107, 15021910462548628626464091829722269
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

Next term is too large to include.

Crossrefs

Formula

a(n) = A102113(A102133(n)).

A102173 Iccanobirt semiprime indices (3 of 15): Indices of semiprime numbers in A102113.

Original entry on oeis.org

5, 9, 11, 16, 22, 29, 67, 72, 87, 90, 94, 95, 119, 123, 146, 188, 323, 330
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a1_,a2_,a3_}]:={a2,a3,a3+FromDigits[Reverse[IntegerDigits[a1]]]+ FromDigits[Reverse[IntegerDigits[a2]]]}; Flatten[Position[Transpose[ NestList[nxt,{0,0,1},200]][[1]],?(PrimeOmega[#]==2&)]]-1 (* _Harvey P. Dale, Oct 17 2012 *)

Formula

A102113(a(n)) = A102193(n).

Extensions

Offset changed to 1 and a(17)-a(18) from Jinyuan Wang, Aug 10 2021

A102193 Iccanobirt semiprimes (3 of 15): Semiprime numbers in A102113.

Original entry on oeis.org

4, 62, 203, 12622, 1587497, 1868619823, 90661877021812382699758, 1538984096138042194598749, 176790247727720247287001192437, 2726402749746956241622994522641, 186786483736027016457092821075933, 273198997240107723863576578753631, 32049985148080783062944679479294696996434
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102113(A102173(n)).

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Aug 10 2021

A102121 Iccanobirt numbers (11 of 15): a(n) = R(a(n-1) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 44, 99, 581, 427, 117, 6201, 6367, 4018, 8621, 16342, 41752, 18376, 15486, 185801, 336123, 551315, 925189, 7799571, 5524929, 5346628, 6800461, 15116342, 36822052, 98232826, 48616741, 398264631, 406948574
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[c+IntegerReverse[b]+IntegerReverse[a]]}; NestList[ nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Mar 23 2023 *)

Formula

a(n) = A004086(A102113(n)).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020
Showing 1-6 of 6 results.