cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102195 Iccanobirt semiprimes (5 of 15): Semiprime numbers in A102115.

Original entry on oeis.org

4, 779, 1138, 57415, 77633, 55486847, 1073911003, 3317721397, 1060433508262511, 71024113009688593314067, 11974445409544006175987023, 1076202964567631961558639609002933, 33696092853645518103687453241761538, 4617443279524324394317910914689160360213
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,Total[FromDigits/@Reverse/@IntegerDigits[{a,c}]]+b};Select[NestList[nxt,{0,0,1},120][[;;,1]],PrimeOmega[#]==2&] (* Harvey P. Dale, Mar 02 2025 *)

Formula

a(n) = A102115(A102175(n)).

Extensions

Offset changed to 1 and a(14) from Jinyuan Wang, Aug 12 2021

A102135 Iccanobirt prime indices (5 of 15): Indices of prime numbers in A102115.

Original entry on oeis.org

4, 6, 7, 19, 46, 613, 1146, 1500, 1982, 2590, 7278, 13714, 15929
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(14) > 50000. - Robert Price, Nov 08 2018

Crossrefs

Programs

Formula

A102115(a(n)) = A102155(n).

Extensions

a(11)-a(13) from Robert Price, Nov 08 2018

A102155 Iccanobirt primes (5 of 15): Prime numbers in A102115.

Original entry on oeis.org

2, 7, 13, 541549, 6058778554555591
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

Next term is too large to include.

Crossrefs

Formula

a(n) = A102115(A102135(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 12 2021

A102175 Iccanobirt semiprime indices (5 of 15): Indices of semiprime numbers in A102115.

Original entry on oeis.org

5, 11, 12, 16, 17, 24, 28, 29, 43, 64, 70, 89, 94, 109, 134, 136, 138, 158, 194, 219, 316
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102115(a(n)) = A102195(n).

Extensions

a(20) from Robert Price, Nov 08 2018
Offset changed to 1 and a(21) from Jinyuan Wang, Aug 12 2021

A102123 Iccanobirt numbers (13 of 15): a(n) = R(R(a(n-1)) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 711, 761, 49, 279, 8811, 1651, 44311, 38141, 55006, 45901, 34108, 990681, 161132, 5891031, 6129461, 8041777, 45820251, 74839842, 60558487, 202825861, 635089352, 309192535, 7549098331, 8252802091
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102115(n)).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020
Showing 1-6 of 6 results.