cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A333981 a(0) = 0; a(n) = 2^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 2^(k-1) * (n-k) * a(n-k).

Original entry on oeis.org

0, 1, 4, 34, 576, 16296, 691408, 41069568, 3252707328, 331218217600, 42159307194624, 6558777387076608, 1224428872399488000, 270143735036619436032, 69534931015726331203584, 20651854796028308275851264, 7009822878720340562163007488, 2696576146784893519040303235072, 1166999997199470676471689819258880
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 2^(n - 1) + (1/n) Sum[Binomial[n, k]^2 2^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[-Log[(3 - BesselI[0, 2 Sqrt[2 x]])/2], {x, 0, nmax}], x] Range[0, nmax]!^2
  • SageMath
    @CachedFunction
    def a(n): return 0 if (n==0) else 2^(n-1) + (1/n)*sum(binomial(n,k)^2 *2^(k-1)*(n-k)*a(n-k) for k in (1..n-1)) # a= A333981
    [a(n) for n in (0..30)] # G. C. Greubel, Jun 09 2022

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((3 - BesselI(0,2*sqrt(2*x))) / 2).

A102222 Logarithm of triangular matrix A102220, which equals [2*I - A008459]^(-1).

Original entry on oeis.org

0, 1, 0, 3, 4, 0, 22, 27, 9, 0, 323, 352, 108, 16, 0, 7906, 8075, 2200, 300, 25, 0, 290262, 284616, 72675, 8800, 675, 36, 0, 14919430, 14222838, 3486546, 395675, 26950, 1323, 49, 0, 1022475715, 954843520, 227565408, 24793216, 1582700, 68992, 2352, 64, 0
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2004

Keywords

Comments

Column 0 forms A102223.

Examples

			Rows begin:
[0],
[1,0],
[3,4,0],
[22,27,9,0],
[323,352,108,16,0],
[7906,8075,2200,300,25,0],
[290262,284616,72675,8800,675,36,0],...
which equals the term-by-term product of column 0
with the squared binomial coefficients (A008459):
[(0)1^2],
[(1)1^2,(0)1^2],
[(3)1^2,(1)2^2,(0)1^2],
[(22)1^2,(3)3^2,(1)3^2,(0)1^2],
[(323)1^2,(22)4^2,(3)6^2,(1)4^2,(0)1^2],...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n
    				

Formula

T(n, k) = C(n, k)^2*A102223(n-k). T(n, 0) = A102223(n). T(n, n) = 0 for n>=0. [A102222] = Sum_{m=1..inf} [A008459 - I]^m/m.

A333982 a(0) = 0; a(n) = 3^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 3^(k-1) * (n-k) * a(n-k).

Original entry on oeis.org

0, 1, 5, 48, 909, 28836, 1371384, 91308708, 8106024861, 925225277004, 132007041682380, 23019553116101268, 4817014157800460664, 1191268407723761654964, 343706793228408937835772, 114423311913128119741898268, 43534429651349601213257298621, 18771927426013054800534345817884, 9106204442628918977341144456510260
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 3^(n - 1) + (1/n) Sum[Binomial[n, k]^2 3^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n],{n, 0, 18}]
    nmax = 18; CoefficientList[Series[-Log[(4 - BesselI[0, 2 Sqrt[3 x]])/3], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((4 - BesselI(0,2*sqrt(3*x))) / 3).

A333983 a(0) = 0; a(n) = 4^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 4^(k-1) * (n-k) * a(n-k).

Original entry on oeis.org

0, 1, 6, 64, 1328, 46336, 2423040, 177379840, 17314109440, 2172895068160, 340868882825216, 65356107645583360, 15037174515952517120, 4088810357694136320000, 1297103066111891262668800, 474788193071044243776077824, 198617395218460028950533898240, 94165608216423156721014443868160
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 4^(n - 1) + (1/n) Sum[Binomial[n, k]^2 4^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n],{n, 0, 17}]
    nmax = 17; CoefficientList[Series[-Log[(5 - BesselI[0, 4 Sqrt[x]])/4], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((5 - BesselI(0,4*sqrt(x))) / 4).

A333984 a(0) = 0; a(n) = 5^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 5^(k-1) * (n-k) * a(n-k).

Original entry on oeis.org

0, 1, 7, 82, 1839, 69630, 3950650, 313747050, 33224570175, 4523562983350, 769859662962750, 160137417877796250, 39971947204607486250, 11791483690935887486250, 4058152793413483423916250, 1611522009185095020022068750, 731368135285580087866788609375, 376178084508304435598172207843750
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 5^(n - 1) + (1/n) Sum[Binomial[n, k]^2 5^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n],{n, 0, 17}]
    nmax = 17; CoefficientList[Series[-Log[(6 - BesselI[0, 2 Sqrt[5 x]])/5], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((6 - BesselI(0,2*sqrt(5*x))) / 5).

A333985 a(0) = 0; a(n) = 6^(n-1) + (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * 6^(k-1) * (n-k) * a(n-k).

Original entry on oeis.org

0, 1, 8, 102, 2448, 99576, 6070032, 517803840, 58901955840, 8614609282944, 1574889814326528, 351896788824053760, 94354291010501932032, 29899137879209196380160, 11053567519385396409446400, 4715135497874174650128617472, 2298676381054790419739595571200, 1270045124912998373344157769891840
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 6^(n - 1) + (1/n) Sum[Binomial[n, k]^2 6^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n],{n, 0, 17}]
    nmax = 17; CoefficientList[Series[-Log[(7 - BesselI[0, 2 Sqrt[6 x]])/6], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((7 - BesselI(0,2*sqrt(6*x))) / 6).

A336437 a(n) = (n!)^n * [x^n] -log(1 - Sum_{k>=1} x^k / (k!)^n).

Original entry on oeis.org

0, 1, 3, 100, 104585, 5781843126, 25450069471437282, 12456703705462747095073458, 900677059707267544414220026068619393, 12337778954350678368447638232258657486399628887370, 39982077640755835496555968029419604779794754953051698069276656138
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[-Log[1 - Sum[x^k/(k!)^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
    b[n_, k_] := If[n == 0, 0, 1 + (1/n) Sum[Binomial[n, j]^k j b[j, k], {j, 1, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]

A336427 a(0) = 0; a(n) = 1 + (1/n) * Sum_{k=1..n-1} binomial(n,k)^3 * k * a(k).

Original entry on oeis.org

0, 1, 5, 100, 5357, 597726, 120049592, 39381634818, 19686000625517, 14233714132535146, 14293760060523962630, 19298235276251711246358, 34108177389621376109912120, 77181320123960021972892515094, 219430688163572488543090308547898
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = 1 + (1/n) Sum[Binomial[n, k]^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 14}]
    nmax = 14; CoefficientList[Series[-Log[1 - Sum[x^k/(k!)^3, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / (n!)^3 = -log(1 - Sum_{n>=1} x^n / (n!)^3).
Showing 1-8 of 8 results.