cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102339 Numbers k such that k*10^3 + 333 is prime.

Original entry on oeis.org

2, 5, 7, 10, 16, 17, 19, 20, 23, 29, 31, 38, 41, 49, 50, 55, 56, 59, 61, 64, 71, 76, 79, 85, 92, 100, 101, 103, 121, 134, 136, 139, 140, 143, 149, 154, 155, 161, 175, 176, 178, 182, 184, 188, 208, 209, 211, 217, 220, 232, 236, 239, 241, 244, 265, 266, 269, 271, 272, 274, 286, 287, 295, 299, 301, 308
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Comments

10^3 and 333 are relatively prime, therefore by Dirichlet's theorem there are infinitely many primes in the arithmetic progression n*10^3+333. No term of the sequence is of the form 3*k, because 3*k*10^3+333 = 3*(k*10^3+111) is divisible by 3, violating the requirement of the definition. - Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2009

Examples

			If k=2,  then k*10^3 + 333 =  2333 (prime).
If k=49, then k*10^3 + 333 = 49333 (prime).
If k=92, then k*10^3 + 333 = 92333 (prime).
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..700] | IsPrime(Seqint([3,3,3] cat Intseq(n))) ]; // Vincenzo Librandi, Feb 04 2011
    
  • Magma
    [ n: n in [0..320] | IsPrime(n*10^3+333) ]; // Klaus Brockhaus, May 20 2009
    
  • Mathematica
    Select[Range[400],PrimeQ[FromDigits[Join[IntegerDigits[#],{3,3,3}]]]&] (* Harvey P. Dale, Oct 14 2014 *)
    Select[Range[0, 1000], PrimeQ[1000 # + 333] &] (* Vincenzo Librandi, Jan 19 2013 *)
  • PARI
    is(n)=isprime(1000*n+333) \\ Charles R Greathouse IV, Jun 06 2017

A102343 Numbers k such that k*10^3 + 777 is prime.

Original entry on oeis.org

1, 2, 11, 19, 22, 26, 41, 43, 44, 47, 50, 53, 65, 67, 68, 71, 76, 79, 80, 83, 94, 97, 107, 110, 113, 115, 122, 124, 125, 131, 134, 136, 137, 145, 146, 152, 155, 158, 167, 169, 170, 173, 176, 181, 184, 199, 202, 211, 212, 226, 229, 232, 233, 250, 253, 254, 268, 272, 274, 281, 284, 286, 292, 295, 298, 299
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 20 2005

Keywords

Comments

From Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2009: (Start)
The sequence is infinite by Dirichlet's theorem about primes in arithmetic progression.
No term of the sequence is of form 3k, because the sum of digits of 10^3*3k + 333 = 3*(10^3 + 259) is divisible by 3, violating the requirement of the definition. (End)

Examples

			k=1: 1*10^3 + 777 = 1777 is prime, hence 1 is in the sequence.
k=50: 50*10^3 + 777 = 50777 is prime, hence 50 is in the sequence.
k=97: 97*10^3 + 777 = 97777 is prime, hence 97 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [ n: n in [0..300] | IsPrime(n*10^3+777) ];
    
  • Mathematica
    Select[Range[300],PrimeQ[1000#+777]&] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    is(n)=isprime(n*10^3+777) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Extended by Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2009
Edited by R. J. Mathar, Apr 30 2009
More terms from Vincenzo Librandi, May 01 2009

A159942 Duplicate of A102339.

Original entry on oeis.org

2, 5, 7, 10, 16, 17, 19, 20, 23, 29, 31, 38, 41, 49, 50, 55, 56, 59, 61, 64, 71, 76, 79, 85, 92, 100, 101, 103, 121, 134, 136, 139, 140, 143, 149, 154, 155, 161, 175, 176, 178, 182, 184, 188, 208, 209, 211, 217, 220, 232, 236, 239, 241, 244, 265, 266, 269, 271, 272
Offset: 1

Views

Author

Keywords

Crossrefs

A102372 Numbers k such that k11111 is prime.

Original entry on oeis.org

3, 5, 6, 9, 20, 24, 26, 39, 42, 48, 60, 65, 68, 83, 84, 93, 95, 108, 119, 126, 132, 146, 167, 179, 182, 189, 203, 206, 213, 224, 227, 230, 233, 234, 249, 258, 269, 270, 272, 291, 296, 305, 315, 324, 329, 336, 341, 345, 347, 348, 363, 368, 377, 384, 387, 392, 402, 422, 423, 438, 440, 450, 455, 458
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 22 2005

Keywords

Examples

			If k=3, then k11111 = 311111 (prime).
If k=60, then k11111 = 6011111 (prime).
If k=126, then k11111 = 12611111 (prime).
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..700] | IsPrime(Seqint([1,1,1,1,1] cat Intseq(n))) ]; // Vincenzo Librandi, Feb 04 2011
  • Mathematica
    Select[Range[500],PrimeQ[100000#+11111]&] (* Harvey P. Dale, Jan 15 2013 *)
Showing 1-4 of 4 results.