A102287 Total number of even blocks in all partitions of n-set.
0, 1, 3, 13, 55, 256, 1274, 6791, 38553, 232171, 1477355, 9898780, 69621864, 512585529, 3940556611, 31560327945, 262805569159, 2271094695388, 20333574916690, 188322882941471, 1801737999086129, 17783472151154007, 180866601699482803, 1893373126840572056
Offset: 1
Examples
a(3)=3 because in the 5 (=A000110(3)) partitions 123, (12)/3, (13)/2, 1/(23) and 1/2/3 of {1,2,3} we have 3 blocks of even size (shown between parentheses).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..575
Programs
-
Maple
G:=(cosh(x)-1)*exp(exp(x)-1): Gser:=series(G,x=0,28): seq(n!*coeff(Gser,x^n),n=1..25); # Emeric Deutsch, Jun 22 2005 # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], add((p->(p+[0, `if`(i::odd, 0, j)*p[1]]))( b(n-i*j, i-1))*multinomial(n, n-i*j, i$j)/j!, j=0..n/i)) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..30); # Alois P. Heinz, Sep 16 2015
-
Mathematica
Range[0, nn]! CoefficientList[ D[Series[Exp[y (Cosh[x] - 1) + Sinh[x]], {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 28 2012 *)
Formula
E.g.f: (cosh(x)-1)*exp(exp(x)-1).
Extensions
More terms from Emeric Deutsch, Jun 22 2005